Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria

Özogul Y. , El Abed N., Özogul F.

FOOD CHEMISTRY, vol.368, 2022 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 368
  • Publication Date: 2022
  • Doi Number: 10.1016/j.foodchem.2021.130831
  • Title of Journal : FOOD CHEMISTRY
  • Keywords: Nanoemulsion, Antimicrobial activity, Laurel essential oil, Food-borne pathogens, Fish spoilage bacteria, L. ESSENTIAL OIL, NOBILIS L., CHEMICAL-COMPOSITION, ANTIBIOFILM ACTIVITIES, ANTIBACTERIAL, ROSEMARY, THYME, OLIVE


This research aimed to apply nanotechnology for nanoformulation of Laurus nobilis essential oil (EO) by ultrasonic emulsification method and characterization of nano-form: particle size, viscosity, polydispersity index, thermodynamic stability, and surface tension. The antimicrobial activity of laurel EO nanoemulsion (LEON) and laurel EO was also investigated against a panel of ten food-borne pathogens and fish spoilage bacteria. The GC-MS analysis of EO revealed that 1,8-Cineole was the main volatile compound. According to disc-diffusion results, LEON was more effective against Gram-positive pathogen bacteria of Staphylococcus aureus and Enterococcus faecalis than EO. Laurel oil demonstrated a higher inhibitory effect against fish spoilage bacteria (6.19 to 18.5 mm). The MICs values of LEON and laurel EO ranged from 6.25 to >25 mg/mL and from 1.56 to >25 mg/ mL, respectively. Nanoemulsion and oil exhibited the best bactericidal activity against Pseudomonas luteola. Therefore, LEON can be developed as a natural antimicrobial agent in food industry.