On finiteness conditions for Rees matrix semigroups


Creative Commons License

Ayik H.

CZECHOSLOVAK MATHEMATICAL JOURNAL, cilt.55, sa.2, ss.455-463, 2005 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 2
  • Basım Tarihi: 2005
  • Doi Numarası: 10.1007/s10587-005-0035-8
  • Dergi Adı: CZECHOSLOVAK MATHEMATICAL JOURNAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.455-463
  • Çukurova Üniversitesi Adresli: Evet

Özet

Let T = M[S; I, J; P] be a Rees matrix semigroup where S is a semigroup, I and J are index sets, and P is a J x I matrix with entries from S, and let U be the ideal generated by all the entries of P. If U has finite index in S, then we prove that T is periodic (locally finite) if and only if S is periodic (locally finite). Moreover, residual finiteness and having solvable word problem are investigated.