Synthesis and characterization of nanoparticles reinforced epoxy based advanced radar absorbing composites


Tumen K. U., Kivrak B., Alkurt F. O., Akyol M., Karaaslan M., EKİCİBİL A.

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, cilt.32, sa.23, ss.28007-28018, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Sayı: 23
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s10854-021-07181-x
  • Dergi Adı: JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.28007-28018
  • Çukurova Üniversitesi Adresli: Evet

Özet

In this study, the structural and magnetic properties of NixCo1-xFe2O4 (0.0 <= x <= 1.0) and ZnO nanoparticles synthesized by the sol-gel method were investigated. The microwave property of the composite structures produced from the combination of ZnO and NixCo1-xFe2O4 nanoparticles dispersed in the epoxy matrix property was studied in the X-band frequency range. The crystal structures of NixCo1-xFe2O4 have not been disrupted by Ni substitution, however, the lattice parameters of samples decrease due to the smaller ionic radii of Ni+2 compared to Co+2 ions. The magnetic saturation (M-s) and remanence magnetization (M-r) decreased with an increasing amount of Ni in NixCo1-xFe2O4 structure. According to the microwave absorption properties of samples, the maximum reflection loss (RL) value was found as -28.10 dB at 10.23 GHz frequency in RAC(4) sample. On the other hand, maximum bandwidth was found at 2.95 GHz around -10 dB for RAC5 sample. All composites exhibit efficient RL in the X-band indicating that they can be used in potential applications in aviation, radar, and defense vehicles.