Late Cenozoic uplift of the Amanos Mountains and incision of the Middle Ceyhan river gorge, southern Turkey; Ar-Ar dating of the Duzici basalt


SEYREK A., DEMİR T., Pringle M., Yurtmen S., Westaway R., Bridgland D., ...Daha Fazla

GEOMORPHOLOGY, cilt.97, ss.321-355, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 97
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1016/j.geomorph.2007.08.014
  • Dergi Adı: GEOMORPHOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.321-355
  • Çukurova Üniversitesi Adresli: Evet

Özet

Using the Ar-Ar technique, we have obtained the first numerical dates for the Pleistocene volcanism along the valley of the River Ceyhan in the Ddzici area of southern Turkey, in the western foothills of the Amanos Mountains. Our six dates indicate a single abrupt episode of volcanism at similar to 270 ka. We have identified a staircase of 7 fluvial ten-aces, at altitudes of up to - 230 in above the present level of the Ceyhan. Using the disposition of the basalt as an age constraint, we assign these terraces to cold-climate stages between marine oxygen isotope stages 16 and 2, indicating rates of fluvial incision, equated to surface uplift, that increase upstream through the western foothills of this mountain range at between 0.25 and 0.4 mm a(-1). Extrapolation of these uplift rates into the axis of the range suggests that the entire - 2300 m of present-day relief has developed since the Mid-Pliocene, a view that we confirm using numerical modelling. Since similar to 3.7 Ma the Amanos Mountains have formed a transpressive stepover along the northern part of the Dead Sea Fault Zone, where crustal shortening is required by the geometry. Using a physics-based technique, we have modelled the overall isostatic response to the combination of processes occurring, including crustal thickening caused by the shortening, erosion caused by orographic precipitation, and the resulting outward flow of mobile lower-crustal material, in order to predict the resulting history of surface uplift. This modelling suggests that the effective viscosity of the lower crust in this region is in the range similar to 1-2 x 10(19) Pa s, consistent with a Moho temperature of similar to 590 +/- 10 degrees C, the latter value being in agreement with heat flow data. This modelling shows that the nature of the active crustal deformation is now understood, to first order at least, in this key locality within the boundary zone between the African and Arabian plates, the structure and geomorphology of which have been fundamentally misunderstood in the past. (C) 2007 Elsevier B.V All rights reserved.