STRUCTURAL ENGINEERING AND MECHANICS, vol.13, no.3, pp.329-343, 2002 (SCI-Expanded)
In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.