The performance improvement of dynamic voltage restorer based on bidirectional dc-dc converter


Inci M., BAYINDIR K. Ç., TÜMAY M.

ELECTRICAL ENGINEERING, cilt.99, sa.1, ss.285-300, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 99 Sayı: 1
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1007/s00202-016-0422-1
  • Dergi Adı: ELECTRICAL ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.285-300
  • Çukurova Üniversitesi Adresli: Evet

Özet

In this study, bidirectional dc-dc (BDC) converter-based dynamic voltage restorer (DVR) is proposed for compensation of severe voltage sag/swell problems in a medium voltage system. Among these problems, voltage swells provoke the voltage rise at dc-link capacitor of DVR. This undesirable situation may explode the dc-link capacitors and switches, and cause high-power losses. In DVR topologies, unidirectional dc-dc converter-based DVRs allow only monodirectional power energy transfer from battery to dc-link capacitor. To prevent voltage rise at dc-link capacitor under severe voltage swell conditions, bidirectional power flow must be achieved between dc-link capacitor and battery. The main contribution of this study is that BDC converter is first exploited in DVR to solve voltage rise problem at dc-link capacitor during voltage swell. Owing to this topology, power can flow both from battery to dc-link capacitor of multilevel inverter or vice versa. For this purpose, proportional-integrator (PI) controller-based algorithm is improved for BDC converter to compensate voltage sags/swells. This algorithm keeps the dc-link voltage constant during voltage sag/swell. The validity of proposed topology and control method is verified with PSCAD/EMDTC. The performance results demonstrate that BDC converter-based DVR achieves good performance to control dc-link voltage under voltage sag/swell situations.