Structural and luminescence characterization of Ce3+ and Mn2+ co-activated zinc silicate nanocrystal obtained by gel combustion synthesis


Portakal-Ucar Z. G., Oglakci M., Yüksel M., Ayvacikli M., Can N.

MATERIALS RESEARCH BULLETIN, cilt.133, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 133
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.materresbull.2020.111025
  • Dergi Adı: MATERIALS RESEARCH BULLETIN
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, INSPEC
  • Anahtar Kelimeler: Gel combustion synthesis, Zn2SiO4:Ce, Mn, Luminescence, TL, anomalous HR, HEATING RATE, PHOTOLUMINESCENCE BEHAVIOR, KINETIC-PARAMETERS, GLOW CURVE, SOL-GEL, THERMOLUMINESCENCE, CASRAL2SIO7CE3+, DECONVOLUTION, TEMPERATURE, MORPHOLOGY
  • Çukurova Üniversitesi Adresli: Evet

Özet

The structural, morphological, and luminescence properties, including photoluminescence (PL) and thermoluminescence ('FL), of newly produced Zn2SiO4:Ce co-activated by Ce3+ and Mn2+ ions using the gel-combustion synthesis, are investigated in deep. To determine the co-dopant effect precisely, non-doped, Ce3+ doped, and Ce3+ and Mn2+ double doped Zn2SiO4:Ce phosphors are evaluated. The fluorescence decay curves indicate that a shorter decay time at relatively high Mn concentrations takes place. The TL glow curve readouts observed by applying the dose range between 0.1 and 2000 Gy after 150 degrees C preheat are performed at a linear heating rate of 2 degrees C/s from room temperature (RT) to 500 degrees C. An anomalous heating rate behavior is observed when the influence of different heating rates on TL characteristics is reported. An excellent agreement is found between the TL kinetic parameters analyzed by the initial rise (IR) with T-M-T(stop )analysis and computerized glow curve deconvolution (CGCD) methods.