Adaptation of the jackknifed ridge methods to the linear mixed models


Ozkale M. R., Kuran O.

JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, cilt.89, sa.18, ss.3413-3452, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 89 Sayı: 18
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1080/00949655.2019.1669037
  • Dergi Adı: JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3413-3452
  • Anahtar Kelimeler: Multicollinearity, Henderson's predictors, ridge predictors, jackknifed ridge predictors, linear mixed models, REGRESSION, ESTIMATOR, PREDICTIONS, ERROR
  • Çukurova Üniversitesi Adresli: Evet

Özet

The purpose of this article is to obtain the jackknifed ridge predictors in the linear mixed models and to examine the superiorities, the linear combinations of the jackknifed ridge predictors over the ridge, principal components regression, r-k class and Henderson's predictors in terms of bias, covariance matrix and mean square error criteria. Numerical analyses are considered to illustrate the findings and a simulation study is conducted to see the performance of the jackknifed ridge predictors.