Flow characteristics comparison of PIV and numerical prediction results for an unmanned underwater vehicle positioned close to the free surface


Kilavuz A., Ozgoren M., Kavurmacioglu L. A., Durhasan T., Sarigiguzel F., Sahin B., ...More

APPLIED OCEAN RESEARCH, vol.129, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 129
  • Publication Date: 2022
  • Doi Number: 10.1016/j.apor.2022.103399
  • Journal Name: APPLIED OCEAN RESEARCH
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, Environment Index, INSPEC, DIALNET
  • Keywords: CFD, Free surface, PIV, Turbulent flow, Unmanned underwater vehicle, AUV, COEFFICIENTS, DRAG, DOWNSTREAM, ATTACK, LAYER, WAKE
  • Çukurova University Affiliated: Yes

Abstract

In the present paper, flow characteristics of an Unmanned Underwater Vehicle (UUV) with a commonly used Myring profile were investigated numerically and experimentally using Computational Fluid Dynamics (CFD) and the Particle Image Velocimetry (PIV) technique under the influence of free surface. The 3-D and two-phase flow simulation generated using the Volume of Fluid (VOF) were carried out using the Large Eddy Simulation (LES) turbulence model for high accuracy in both near free-surface and almost uniform flow conditions. Due to the presence of the free-surface effect, dynamics and unsteady instantaneous flow characteristics such as force and moment coefficients, streamlines topology, and pressure values on the body surface along with vorticity structures were found to be very chaotic and have irregular motion in the wake while the followable variation trend of the time-averaged properties was obtained to show critical immersion ratio. The immersion ratios of 0.75 <= h/D <= 3.50 were examined at Reynolds numbers Re = 2.0 x 104 and 4.0 x 104. Jet-like flow between the UUV body and the free surface of the water was detected at the immersion ratio of h/D = 0.75, which caused a substantial asymmetry in flow structures, resulting in highest drag and lift values. Increased surface disturbance at Re = 4.0 x 104 caused air introduction into via jet-like flow in h/D = 0.75, which caused positive lift. Hy-drodynamic coefficients and isosurfaces shown that the free-surface effect decreased significantly up to h/D = 1.50 at constant Reynolds numbers. Further investigation of time-averaged velocity components, streamlines, vorticity and turbulence statistics revealed that h/D = 1.50 acted as a transitional immersion ratio as the flow structure changed significantly with Reynolds numbers. The utilized CFD approach yielded especially excellent agreement with the PIV measurements with the discrepancy which varies from 1% to 15% in near wake for streamwise velocity components to simulate the essential unmeasured flow features needed in the research and development process of UUVs when they move below the free surface.