
RAUMA to the spinal cord produces tissue damage
through direct and indirect mechanisms.1,19,22 The
ultimate results of this damage are influenced by

the severity of the initial physical impact and by various
secondary factors that occur near the site of primary in-
jury.3,44 The extent and severity of the secondary injuries
depend on the magnitude of the initial insult, as well as on

contributing factors that include substances released into
the microenvironment, cell reactions in the spinal cord tis-
sue, reduction in blood flow to the site, changes in the use
of O2 and glucose by the damaged tissue, reduction of
extracellular CA++, release of free radicals, lipid peroxida-
tion, changes in levels of neuropeptides and monoamines,
and the production of arachidonic acid metabolites.17,23,24,33,

52–55,58,64,69–76,78,79,89

Nitric oxide is a tiny molecule that plays a pivotal role in
maintaining cellular homeostasis.46,48 It is synthesized from
L-arginine and O2 by the enzyme NOS,42 which exists in
three isoforms. Neuronal NOS mediates synaptic plasticity,
neuronal signaling and, after ischemic damage, neurotoxi-
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Object.The inflammatory cells that accumulate at the damaged site after spinal cord injury (SCI) may secrete interleukin-
6 (IL-6), a mediator known to induce the expression of inducible nitric oxide synthase (iNOS). Any increased production
of NO by iNOS activity would aggravate the primary neurological damage in SCI. If this mechanism does occur, the direct
or indirect effects of IL-6 antagonists on iNOS activity should modulate this secondary injury. In this study, the authors pro-
duced spinal cord damage in rats and applied anti–rat IL-6 antibody to neutralize IL-6 bioactivity and to reduce iNOS. They
determined the spinal cord tissue activities of Na+-K+/Mg++ adenosine-5�-triphosphatase (ATPase) and superoxide dismu-
tase, evaluated iNOS immunoreactivity, and examined ultrastructural findings to assess the results of this treatment.

Methods.Seventy rats were randomly allocated to four groups. Group I (10 rats) were killed to provide normal spinal
cord tissue for testing. In Group II 20 rats underwent six-level laminectomy for the effects of total laminectomy alone to
be determined. In Group III 20 rats underwent six-level T2–7 laminectomy and SCI was produced by extradural com-
pression of the exposed cord. The same procedures were performed in the 20 Group IV rats, but these rats also received
one (2 
g) intraperitoneal injection of anti–rat IL-6 antibody immediately after the injury and a second dose 24 hours post-
trauma. Half of the rats from each of Groups II through IV were killed at 2 hours and the other half at 48 hours posttrau-
ma. The exposed cord segments were immediately removed and processed for analysis.

Conclusions.The results showed that neutralizing IL-6 bioactivity with anti–rat IL-6 antibody significantly attenuates
iNOS activity and reduces secondary structural changes in damaged rat spinal cord tissue.
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superoxide dismutase. 



city. Nitric oxide production via endothelial NOS protects
brain tissue by maintaining regional cerebral blood flow.63

The third isoform has been labeled iNOS because it is only
expressed under pathological conditions, such as inflam-
mation.82,83Once expressed, iNOS catalyzes the production
of an excessive amount of NO (nanomolar quantities) for
several hours, and this disrupts cellular homeostasis and
leads to neurotoxicity.6,20,32,51,63,66In vitro induction of iNOS
results in delayed neuronal cell death.11,15

Cytokines are known mediators of immune and inflam-
matory responses.27 Inflammatory cells secrete these sub-
stances, some of which induce iNOS expression.48 A sig-
nificant increase in the level of IL-6 in CSF reflects severe
inflammation of the CNS.40,43 In experimental studies in-
vestigators have documented elevated levels of IL-6 in the
CNS after traumatic brain injury in the rat.80

Based on current knowledge, it is conceivable that in-
flammatory cells may secrete IL-6 after SCI and, thus,
induce iNOS expression. Excessive production of NO
through iNOS induction would aggravate the primary
injury, causing more serious damage to the spinal cord tis-
sue. If this mechanism holds true, it follows that direct 
or indirect effects of IL-6 antagonists on iNOS activity
would modulate the amount of secondary damage that
occurs after SCI. We sought to assess the effects of neu-
tralizing rat IL-6 bioactivity and reducing iNOS induction
by administering anti–rat IL-6 antibody after experimen-
tal SCI in the rat. We evaluated the results of this treat-
ment by determining the activity of Na+-K+/Mg++ ATPase
and SOD, examining iNOS immunoreactivity, and evalu-
ating ultrastructural findings.

Materials and Methods
Seventy adult male Wistar rats, each weighing between 280 and

310 g, were used in the study. All animals received an anesthetic of
ketamine (50 mg/kg) and xylazine (10 mg/kg). We used the clip
compression model described by Rivlin and Tator61 and produced
SCI by extradural compression of a section of cord exposed via 
a six-level T2–7 laminectomy, in which the prominent spinous
process of T-2 was used as a surgical guide. A six-level laminecto-
my was chosen to expedite timely harvest and to obtain enough
spinal cord tissue for biochemical examination. With the aneurysm
clip applicator oriented in the bilateral direction, an aneurysm clip
with a closing force of 50 g was abruptly applied externally to the
dura. The clip was then rapidly released from the clip applicator,
which caused spinal cord compression. In the injured groups, the
cord was compressed for 1 minute. The same clip was used in all
the animals in which SCI was induced. 

To assess for possible variation in lesion severity, we conducted
a preliminary study and applied this method in a separate group of
20 rats. Ten weeks after clip compression injury, the rats’ spinal
cords were removed, fixed in buffered neutral formalin, embedded
in paraffin, cut into 8-
m-thick serial sections, and stained by the
Klüver–Barrera Luxol fast blue method. Five rats died during the
10-week postinjury period, and these animals were excluded. All
specimens were assessed under light microscopy, according to the
degree of cavitation over the entire surface of the cord and in the
corticospinal tract. The results were all in the range of 75 to 85%,
which indicated to us that there was no significant animal-to-animal
difference in lesion severity when this method was used. 

The 70 rats in the experiment were randomly allocated to a group
of 10 uninjured controls (Group I), a group of 20 rats that underwent
six-level laminotomy only (Group II, sham operated), and a set of
40 in which SCI was induced. Immediately after SCI was produced,
each of these 40 rats was randomly assigned to either the trauma
(Group III, 20 rats) or anti–rat IL-6 antibody–treated group (Group
IV, 20 rats). All evaluations were performed in blinded fashion, and

all surgical procedures were conducted with the aid of an operating
microscope.

Group I control rats were used to determine normal Na+-K+/Mg++

ATPase and SOD activities, iNOS immunoreactivity, and spinal cord
ultrastructure in the absence of surgery or medication. Group II
(sham-operated) rats underwent six-level laminectomy and received
an intraperitoneal injection of saline equal in volume to that received
by anti–rat IL-6–treated rats in Group IV. The aim was to determine
the impact of laminectomy alone on the biochemical factors meas-
ured, iNOS immunoreactivity, and cord ultrastructural findings.
Group III (trauma-only) rats received an intraperitoneal saline injec-
tion—identical to that used in Group II rats—immediately after SCI
was produced. Group IV (anti–rat IL-6 antibody–treated) rats re-
ceived one intraperitoneal injection of anti–rat IL-6 antibody (2 
g)
immediately post-SCI and received a second dose 24 hours later. The
exact concentration of antibody required to neutralize rat IL-6 activ-
ity is dependent on the IL-6 concentration. The exact IL-6 concen-
tration in rat spinal cord after clip-induced injury, however, is not
known. To provide a guideline, the manufacturer of the antibody has
determined the neutralization dose for this antibody under a specific
set of conditions. The ND50 for this antibody is defined as the con-
centration of antibody required to yield one-half maximal inhibition
of IL-6 activity on a responsive cell line. The ND50 of the anti–rat IL-
6 antibody (immunoglobulin class: recombinant rat IL-6–specific
goat immunoglobulin G) was determined to be 0.03 to 0.09 
g/ml in
the presence of 0.6 ng/ml of recombinant rat IL-6. Accordingly, the
ND50 of anti–rat IL-6 antibody in this study was determined to be
approximately 2 
g based on the previous studies,40,43,80as well as the
rat’s body weight and blood and CSF volume.

Sample Collection

Immediately after Group I animals were killed, their spinal cord
tissue was prepared for assays of Na+-K+/Mg++ ATPase and SOD,
and iNOS immunohistochemical and ultrastructural analysis. In
Groups II through IV, 10 animals from each group were killed 2
hours and 48 hours after surgery alone (Group II) or trauma. This
created two subgroups per group, with Groups II-A, III-A, and IV-
A killed at 2 hours and Groups II-B, III-B, and IV-B at 48 hours.
Each rat was anesthetized and underwent transcardial perfusion,
first with approximately 100 ml 0.1 M phosphate-buffered saline
(pH 7.3) and then with 150 ml of 4% paraformaldehyde under con-
stant pressure. Each animal’s exposed spinal cord segment was
removed immediately after perfusion. The sample obtained from
the injury site was divided transversely into four blocks from cranial
to caudal. The first and fourth blocks were stored in a –80˚C freez-
er for assays of Na+-K+/Mg++ ATPase and SOD, respectively. The
second and third blocks were used for iNOS immunohistochemical
and ultrastructural analysis, respectively.

Determination of Na+-K+/Mg++ ATPase Activity

Homogenates (10%) of the tissue were prepared in 0.3 M sucrose
containing 1 mM Mg++ by homogenizing for 90 seconds with a
Teflon pestle clearance of 0.25 to 0.38 mm at 1000 rpm. Adenosine
triphosphatase activity was determined in the resulting supernatants
by measuring the rate of liberation of inorganic phosphate from di-
sodium ATP.59 Incubation media were prepared as described previ-
ously.60

Adenosine-5�-triphosphates were as follows: Na+-K+ ATPase- 6
mM MgCl2, 5 mM KCl, 100 mM NaCl, 0.1 mM ethylenediaminete-
traacetic acid, and 135 mM Tris-HCl buffer pH 7.4. After preincuba-
tion for 5 minutes at 37˚C, Na2 ATP was added to each tube to reach
a final concentration of 3 mM. The blank sample that contained no
enzyme, the standard, and unknowns were incubated at 37˚C for 30
minutes. The reaction was stopped by placing the samples on ice.
Inorganic phosphate was determined in 1-ml aliquots of the incubat-
ed mixtures by adding Lubrol–molybadate solution followed by cen-
trifugation; the mixtures were then allowed to stand at ambient tem-
perature for 10 minutes. Extinction at 240 nm was measured. All
assays were conducted in triplicate and were run with enzyme and
reaction blanks. Samples were compared for phosphate content with
standards of KH2PO4. Specific activities were calculated as
nanomoles of inorganic phosphate/hour/milligram of protein.
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All reagents were of Analar grade unless otherwise stated. The
Lubrol–molybadate solution was prepared according to the method
described by Reading and Isbir.59,60 The protein content was deter-
mined according to the method reported by Lowry, et al.,41 and
bovine serum albumin was used as a standard.

Determination of SOD Activity

We isolated SOD from the cord tissue in a preparation in the
manner described by Yarbrough.85 The pyrogallol method was used
to measure SOD activity, with slight modification, as described by
Roth and Gilbert.62 Specific activities were calculated as units/gram
protein.

Electron Microscopy

Each tissue block was immediately placed in 5% glutaraldehyde
buffered at pH 7.4 with Milloning phosphate buffer45 for 3 hours.
The samples were then fixed in 1% osmic acid for 2 hours, after
which they were dehydrated in graded ethanol baths, embedded in
Araldite, and processed for transmission electron microscopy in
which conventional methods were used.

Immunohistochemical Analysis of iNOS

On removal, the spinal cord blocks designated for immunohisto-
chemical analysis were placed in the buffered neutral formalin and
refrigerated overnight at 4˚C. The next day, the tissue samples were
dehydrated in graded ethanol baths, embedded in paraffin, and
sliced in 4- to 6-
m-thick sections. The sections were then deparaf-
finized with 100% xylene and rehydrated in graded ethanol baths.
Next, the sections were incubated in 3% H2O2 to block endogenous
peroxidase activity and washed in phosphate-buffered saline. To
block nonspecific binding, the sections were then incubated for 10
minutes in serum-blocking solution. Thereafter, they were incubat-
ed overnight at 4˚C with anti-iNOS antibody. Finally, we used the
streptavidin–biotin technique for visualization. For negative con-
trols, some of the spinal cord sections were treated with a nonim-
mune serum instead of the same concentration of primer antibody.
Aminoethylcarbazole was used as the chromogenic substrate.

The Mann–Whitney U-test was used for all statistical analyses.

Sources of Supplies and Equipment

The aneurysm clip (FE 691K) was purchased from Aesculap AG
(Tuttlingen, Germany). The anti–rat IL-6 antibody was obtained
from R & D Systems (Minneapolis, MN). Boehringer-Mannheim
(Mannheim, Germany) produced the Na++ ATPase, and Sigma
Chemical Co. (St. Louis, MO) manufactured the Lubrol-type Px
reagent. We acquired the anti-iNOS antibody (SA-200) from
Biomol (Hamburg, Germany). For processing the immunohisto-
chemical sections, we used the Zymed kit obtained from Zymed
Lab (San Francisco, CA).

Results

Activity of Na+-K+/Mg++ ATPase 

Figure 1 shows the effect of injury with and without the
intraperitoneal administration of anti–rat IL-6 antibody on
Na+-K+/Mg++ ATPase activity in spinal cord homogenate
measured 2 hours and 48 hours after trauma. Injury alone
resulted in significantly decreased Na+-K+/Mg++ ATPase
activity in the damaged segments compared with both
control and sham-operated rats at both time points post-
trauma (p � 0.05). The decreased activity noted in the
sham-operated subgroups did not differ statistically from
the values determined in the control group (p � 0.05).
Intraperitoneal administration of anti–rat IL-6 antibody
(Groups IV-A and IV-B) attenuated the decrease in Na+-
K+/Mg++ ATPase activity noted in the trauma-only group,
and this was observed both 2 hours and 48 hours after
treatment (p � 0.05).

Activity of SOD

Figure 2 shows the effect of injury with and without
anti–rat IL-6 antibody treatment on SOD activity in spinal
cord homogenates 2 hours and 48 hours posttrauma.
Superoxide dismutase activity was higher in the sham-
operated rats than in control rats, but the difference was sta-
tistically insignificant (p � 0.05). The activity was signifi-
cantly higher in the traumatized rats than in those in the
sham-operated and control groups (p � 0.05), and anti–rat
IL-6 antibody treatment significantly decreased SOD activ-
ity at both time points posttrauma compared with the val-
ues observed in the trauma-only groups (p � 0.05).

Immunoreactivity of iNOS 

The spinal cord tissue obtained in rats from Groups I, 
II-A, and II-B showed weak immunoreactivity with anti-
iNOS antibody. The mononuclear cells of the pia-arach-
noid membranes and microglial cells in the white matter of
the cords stained positive. In sections obtained in the trau-
ma-only rats (Groups III-A and III-B), in addition to stain-
ing in the mononuclear cells and microglial cells, we noted
a positive reaction in the axons, dendrites, and capillary
vessel walls (Fig. 3 upper). Inducible NOS immunoreac-
tivity in the cord tissue obtained in Group IV-A rats was
similar to that observed in Group III-A rats (Fig. 3 center).
Group IV-B showed weak immunoreactivity to anti-iNOS
antibody (Fig. 3 lower). Table 1 summarizes the qualitative
scoring conducted according to the level of iNOS-positive
staining observed in the control, sham-operated, trauma-
only, and anti–rat IL-6 antibody–treated groups.

Ultrastructural Findings

Group I. Spinal cord tissue samples obtained in control
rats exhibited gray and white matter, with intact nerve cells,
glial cells, and nerve fibers. The nerve cells contained a
vesicular nucleus, and the cytoplasm of many of the cyto-
plasmic organelles was mildly stained. The healthy nerve
fibers were composed of myelinated and unmyelinated
axons. The capillary walls were also normal, as were the
pericapillary glial cell extensions.

Group II-A.In the sham-operated group, the spinal cord
ultrastructure was similar to that demonstrated in the nor-
mal control rats; however, some of the myelinated nerve
fibers showed focal degeneration of the myelin sheath.

Group III-A. In this trauma-only group, in addition to
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TABLE 1
Inducible NOS immunoreactivity in spinal cord tissue*

Group Staining Score

I +
II-A +
III-A +++
IV-A +++
II-B +
III-B +++
IV-B ++

* + = mononuclear and microglial cells; ++ = mononuclear cells, micro-
glial cells, and some capillary walls; +++ = mononuclear cells, microglial
cells, capillary walls, axons, and dendrites.



extensive hemorrhagic areas, structural degeneration was
more prominent in both the gray and white matter. The gray
matter nerve cells showed changes in the nuclear chro-
matin, vacuolation of cytoplasmic organelles, and disinte-
gration of mitochondrial membranes. We also observed
vacuolation of the perineuronal cell feet and mild-to-mod-
erate ultrastructural changes in the glial cells as well. In the
white matter, the oligodendrocytes showed cytoplasmic
vacuolation. The myelinated nerve fibers exhibited degen-
eration of the axons and myelin sheaths. Separation and
disruption of the myelin lamellae, as well as invaginations
of the myelin sheath to the level of the axon, were also
common findings. Some of the myelinated nerve fibers
showed axonal changes (Fig. 4 upper left). The capillary
endothelial cells exhibited abnormal nuclear chromatin and
degeneration of cytoplasmic organelles, as well as irregular
thickening of the basal lamina. Additionally, the pericapil-
lary astrocytic processes were enlarged.

Group IV-A.In this treated group, we noted intercellular
and pericapillary edema. There were structural changes in
the neurons and glial cells in the gray matter. The appear-
ance of the myelinated nerve fibers was similar to that
observed in Group III-A (Fig. 4 upper right). The capil-

lary wall showed changes in the endothelium and the
basal lamina.

Group II-B.The ultrastructural organization in this sham-
operated group was similar to that in the control group.

Group III-B. The edematous areas seen in the cord tis-
sue obtained in rats in this trauma-only group were simi-
lar to those seen in Group III-A, but the hemorrhage was
less extensive. The nerve cells in the gray matter exhibit-
ed changes in the nucleus and cytoplasmic organelles. The
ultrastructural irregularities were even more prominent 
in the white matter, where the myelinated nerve fibers
showed myelin sheath disruptions and axonal organelle
changes (Fig. 4 lower left). The capillary endothelial cells
exhibited mild-to-moderate organelle changes as well.
Pericapillary edema was also noted.

Group IV-B.The spinal cord tissue obtained in the an-
ti–rat IL-6–treated rats exhibited interstitial edema in
some regions, but this was less extensive than that seen in
the corresponding trauma-only rats. The nerve cells in the
gray matter showed mild-to-moderate organelle changes,
including vacuolation of membranous organelles and
higher numbers of lipofuscin granules. Glial cell structure
was generally normal. In the white matter, the myelinated
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FIG. 1. Graph depicting the effect of injury with and without anti–rat IL-6 antibody treatment on Na+K+/Mg++ ATPase
activity of in the spinal cord. Values are expressed as the means; vertical bars indicate standard errors of the means. Pi =
inorganic phosphate.

FIG. 2. Graph showing the effect of injury with and without anti–rat IL-6 antibody treatment on the SOD activity in
the spinal cord. Values are expressed as means; vertical bars indicate standard errors of the means.



nerve fibers showed mild abnormalities of the myelin
sheaths, such as separation and partial disruption of the
lamellae. The ultrastructure of the axolemma and axonal
organelles was normal (Fig. 4 lower right), and the capil-
lary endothelial cells and basal lamina were also intact.

Discussion

The involvement of iNOS expression has been demon-
strated in such pathological CNS conditions as cerebral
ischemia,35 experimental allergic encephalitis,88 and multi-
ple sclerosis.2 The cytotoxic action of NO, as driven by
iNOS induction, appears to play a critical role in each of
these conditions. Initiation of iNOS is most striking in
immunocompetent cells that have been exposed to cyto-
kines. Microglia are the immunocompetent cells in the
CNS, and they are known to express iNOS when subjected
to adequate stimulation.11 In addition to microglial cells,
iNOS expression increases under pathological conditions
when cells such as macrophages, neurons, astroglia, vascu-
lar smooth muscle cells, and endothelial cells are exposed
to cytokines.47,49

The mechanism responsible for iNOS upregulation
after focal SCI is not clear. Alterations in the microenvi-
ronment at the damaged site and the release of several
neurochemicals after injury appear to be important ele-
ments.44,53,75,76Neurochemicals may trigger the opening of
cation-permeable channels, resulting in greater accumu-
lation of intracellular Ca++ than that which occurs under
normal conditions.3,25,79 Interleukin-6 is one of the major
inflammation-associated cytokines. Researchers have dem-
onstrated local production of IL-6 and elevated CSF lev-
els of this mediator in noninfectious CNS inflammatory
disease.29 It is believed that applying antiserum raised
against a particular hormone or chemical compound can
neutralize the function of the compound itself in vivo,75

and this was the premise for our use of the anti-IL-6 anti-
body. One group of authors reported that systemically
administered antibodies to IL-6 penetrate the CSF in ani-
mals with noninfectious CNS inflammatory disease, ham-
pering the development of the normally induced disease
process.28 The mechanism behind iNOS upregulation may
be that release of IL-6 from inflammatory cells triggers
increased production of one or several intracellular neuro-
chemicals, which, in turn, initiate iNOS activity.

After trauma, eicosanoids, leukotrienes, and superoxide
anions accumulate in the intra- and extracellular spaces.
These substances exert a toxic effect on the cells that respire.
It is well known that iNOS induction can lead to the pro-
duction of free radicals and/or lipid peroxidation.4,5 Lipid
peroxidation activates the arachidonic acid cascade and the
protein kinase C system.56,68 When NO is overproduced, it
contributes to cytotoxic effects through a number of mech-
anisms, including inhibition of mitochondrial respiration via
inhibition of the citric acid cycle. Additionally, the cytotox-
ic action of NO can be augmented by the generation of the
highly reactive free-radical species peroxynitrite, which can
contributes to cellular dysfunction through lipid peroxida-
tion.4,7,12,37,38,50,57These effects prompted us to evaluate Na+-
K+/Mg++ ATPase activity, SOD level, iNOS immunoreactiv-
ity, and ultrastructural findings as indicators of the value of
anti–rat IL-6 antibody in the treatment of SCI.

Because SOD is a specific free-radical scavenger,14 its
activity in the rats’ spinal cords reflected the impact that
neutralizing rat IL-6 bioactivity had on free-radical pro-
duction. The SOD activity in the anti–rat IL-6–treated rats
was significantly lower than that in the trauma-only
group. This is also good evidence that anti–rat IL-6 an-
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FIG. 3. Photomicrographs.Upper:Group IV-A. The white mat-
ter stained strongly positive for iNOS.Center:Group III-B. The
white matter shows extensive iNOS immunoreactivity.Lower:
Group IV-B. There was significantly less iNOS immunoreactivity in
the spinal cord compared with that seen in Group III-B. Microglia
(arrows), axons and dendrites (asterisk), and capillary (arrowhead)
are shown. Aminoethylcarbazole and hematoxylin, original magnifi-
cations � 200 (upperand lower) and � 250 (center).



tibody neutralizes IL-6 and attenuates iNOS induction,
which, in turn, decreases the level of free-radical produc-
tion in the spinal cord tissue. Another possible mechanism
for our findings might be that the inflammatory response
is attenuated via neutralizing rat IL-6 bioactivity, which
decreases the entry of inflammatory cells, such as poly-
morphs, to the CNS because IL-6 is one of the mediators
of inflammatory response.27 Thus, it might also decrease

free-radical generation. The end result is reduced sec-
ondary neurological damage.

Schettini, et al.,67 studied the fluctuations in SOD that
occur over time after ischemia–reperfusion injury in the
dog. They reported that SOD activity increases fivefold 60
minutes postinjury, drops to twice normal at 150 minutes,
and rises again to reach three times the normal rate at 24
hours. When we determined the SOD levels in all groups,
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FIG. 4. Electron microscopy studies.Upper Left:Group III-A. Most myelinated nerve fibers in the white matter
show axon and myelin sheath abnormalities (arrows). Bar = 2.5 
m. Upper Right:Group IV-A. The nerve cell (nc)
exhibits enlarged mitochondria (m) and disintegration of mitochondrial cristae. The myelinated nerve fibers show
changes in the axons and myelin sheaths (arrows). Nucleus (n). Bar = 1.7 
m. Lower Left:Group III-B. The myelin-
ated nerve fibers show axon and myelin sheath degeneration (arrows). Oligodendrocyte (od). Bar = 1.7 
m. Lower
Right: Group IV-B. The oligodendrocyte exhibits increased numbers of lysosomes (L) and mild mitochondrial abnor-
malities. The myelinated nerve fibers show focal myelin sheath degeneration (arrows). Axons (a). Bar = 1.7 
m.



the mean values in Groups III-B and IV-B (rats killed 48
hours posttrauma) were higher than those in Groups III-A
and IV-A (those killed 2 hours posttrauma). It is logical
that the iNOS induced by cytokines during secondary in-
jury causes free-radical production and that, over time,
SOD would rise in conjunction with the increasing levels
of free radicals.

Adenosine-5�-triphosphatases are enzymes that execute
important cellular functions in ionic and osmotic balance
and in active transport. Because ATPases are very suscep-
tible to free-radical exposure and lipid peroxidation, their
activity is reduced in damaged tissue.10,39 In several recent
reports the authors have focused on the process of free
radical–induced lipid peroxidation and its negative impact
on lipid-dependent enzymes such as Na+-K+–activated
ATPase and Na+-K+/Mg++ ATPase, after SCI.8,13,18,23,31,65

Analysis of the results indicates that the activity of lipid-
dependent enzymes is a useful parameter for evaluating
cellular disturbance caused by SCI. We used ATPase
activity levels to gauge the therapeutic action of anti–rat
IL-6 antibody as effected through indirect inhibition of
iNOS induction during secondary SCI. The levels of the
Na+-K+/Mg++ ATPase activity in the trauma-only rats were
markedly reduced at 2 hours and 48 hours after injury
compared with that in the sham-operated rats at both time
points. This lower activity was also associated with
increased SOD levels, and this finding fits with the afore-
mentioned interpretation for SOD. In contrast, the Na+-
K+/Mg++ ATPase activity in the antibody-treated rats was
significantly higher than that in the trauma-only group 2
hours and 48 hours postinjury. These biochemical findings
also correlated well with milder ultrastructural changes
observed in the spinal cords removed from the antibody-
treated group. Our findings show that anti–rat IL-6 anti-
body significantly inhibits the decrease in Na+-K+/Mg++

ATPase activity that typically occurs after SCI. This effect
reflects attenuation of iNOS induction and in vivo lipid
peroxidation during the process of secondary injury.

Electron microscopy showed marked ultrastructural
changes in the gray and white matter of the spinal cords
obtained in the trauma-only rats. In contrast, the spinal
cords obtained in the anti–rat IL-6–treated group exhibit-
ed milder subcellular damage and less edema. These find-
ings demonstrate that the application of anti–rat IL-6 anti-
body partially blocks the progression of edematous and
structural changes in the rat spinal cord after clip com-
pression injury. On this basis, it appears that there may be
therapeutic value in administering anti–rat IL-6 antibody
to reduce secondary spinal cord damage.

A single 2-
g dose of anti–rat IL-6 antibody had no
effect on clip injury–induced ultrastructural changes or
iNOS immunoreactivity in the spinal cord when testing
was administered 2 hours after injury. Administering two
doses of anti–rat IL-6 antibody resulted in milder ultra-
structural changes and decreased iNOS immunoreactivity
compared with that demonstrated in the trauma-only
group. It seems that the single dose of antibody was either
ineffective or required more time to neutralize IL-6 and
attenuate the initiation of iNOS activity in the spinal cord.
This observation is in agreement with previous findings:
various NOS inhibitors act in a dose-dependent manner to
reduce or aggravate neurotoxicity in both in vitro and in
vivo settings.16,84 To our knowledge, our immunohisto-

chemical findings are the first to show that the application
of anti–rat IL-6 antibody neutralizes IL-6 and thus attenu-
ates iNOS induction in vivo.

We found that iNOS activity is upregulated in conjunc-
tion with prominent subcellular damage after SCI, and
this finding supports the theory that abnormal production
of NO via iNOS is harmful.16,36,81 Specifically, we ob-
served that the gray and white matter in nontreated ani-
mals showed marked ultrastructural changes and extensive
iNOS immunoreactivity, and application of anti–rat IL-6
antibody reduced iNOS immunoreactivity and curbed
some of the typical structural changes seen in the spinal
cord after injury. Other investigators have noted similar
observations in rats. It has been documented that intrathe-
cal or topical application of antibodies to dynorphin A or 
5-HT reduces the severity of neurological damage and
diminishes gross expansion of the spinal cord and cell
changes following focal trauma to the spinal cord.21,71,75

Normal spinal cord neurons contain NOS,9,26 but iNOS
is not detected in healthy tissue.49 Research has demon-
strated iNOS expression in cells that are positive for the
monocyte/macrophage lineage marker in multiple sclero-
sis,2 as well as in blood vessel walls and anterior horn cells
in experimental allergic encephalitis.88 In our study, con-
trol rats exhibited weak iNOS immunoreactivity in the
mononuclear cells of the pia-arachnoid membranes and in
microglial cells in the white matter of the spinal cord.
These tissues and cells have not been shown to stain 
positive in previous immunohistochemical investiga-
tions,2,35,49,88and there is no definitive explanation for this
discrepancy. The higher sensitivity of our testing method
may be one reason for the difference. In addition, our re-
sults indicated there was marked upregulation of iNOS 
in the mononuclear cells, microglial cells, capillary wall,
axons, and dendrites after clip compression SCI. This
indicates that our antibody and immunohistochemistry
protocol was sensitive enough to detect very small
changes in iNOS immunoreactivity.

In some reports the authors have stated that iNOS is not
involved in the early cell changes that follow SCI because
upregulation requires relatively long survival (2–3 days)
after ischemic injury.36,87 In contrast to this contention in
experiments on rat brain Iadecola, et al.,35 found that iNOS
protein and catalytic activity were detectable 12 hours
after cerebral ischemia, that they peaked at 48 hours, and
returned to baseline after 7 days. Hu, et al.,34 reported that
iNOS immunoreactivity and enzymatic activity increased
at 4 hours and persisted for 24 to 48 hours after intrathe-
cal injection of dynorphin A. Increased NOS immunore-
activity in neurons in which this does not normally occur
has been described in cell bodies of brainstem nuclei sev-
eral weeks after axotomy.30,86 Other authors have noted
several NOS-positive neurons in the spinal cord gray mat-
ter 5 hours postinjury.77 We found iNOS expression in
mononuclear cells of the pia-arachnoid membranes, white
matter microglia, capillary wall, and axons and dendrites
of the spinal cord at only 2 hours postinjury. 

The most significant finding in our study is that clip
compression SCI induces rapid and widespread expression
of iNOS immunoreactivity in axons and dendrites that nor-
mally do not express this enzyme activity. Also interesting
is the fact that we observed strong correlations among the
levels of iNOS immunoreactivity in mononuclear cells,
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microglia, capillary endothelium, axons, and dendrites.
These levels of iNOS expression correlated well with the
degree of edematous involvement and ultrastructural dam-
age observed in the spinal cord tissue. Together, these find-
ings indicate that iNOS plays a key role in secondary injury
after spinal cord trauma.

Conclusions

To the best of our knowledge, this is the first study to
demonstrate that anti–rat IL-6 antibody treatment for SCI
simultaneously attenuates iNOS upregulation, reduces ul-
trastructural damage, decreases SOD level, and increases
Na+-K+/Mg++ ATPase activity. These findings prove that
anti–rat IL-6 antibody effectively neutralizes IL-6 bioac-
tivity and that the resultant decrease in iNOS activity is
key to inhibiting secondary spinal cord damage.
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