Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary


EICHEL R., Eruenal E., DRAHUS M. D., Smyth D. M., VAN TOL J., Acker J., ...Daha Fazla

PHYSICAL CHEMISTRY CHEMICAL PHYSICS, cilt.11, sa.39, ss.8698-8705, 2009 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 39
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1039/b905642d
  • Dergi Adı: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.8698-8705
  • Çukurova Üniversitesi Adresli: Hayır

Özet

Cu2+-doped Pb[Zr0.54Ti0.46]O-3 (PZT) and Cu2+-doped [K0.5Na0.5]NbO3 (KNN) ferroelectrics with a dopant concentration of 0.25 mol% were investigated by means of multi-frequency and multi-pulse electron paramagnetic resonance (EPR) spectroscopy. Through the use of high magnetic fields and pulsed microwave fields an enhanced resolution was achieved yielding valuable information about the structural distortion at the dopant site. The results obtained suggest that Cu2+ substitutes for both systems as an acceptor centre for the perovskite B-site. For reasons of local charge compensation, different kinds of defect associates invoking one and two oxygen vacancies are formed. These two kinds of extended defects differ in their electric and elastic properties. The results obtained are analyzed in order to characterize differences of the local structure in the Cu2+-defect center for morphotropic phase boundary compositions between the two systems. In particular, it is found that Cu2+-doping in KNN creates 50% more oxygen vacancies than the same amount of copper in PZT. Furthermore, local differences in covalent and ionic bonding are