Differential Effect of L-Cysteine in Isolated Whole-Bladder Preparations from Neonatal and Adult Rats


Creative Commons License

BÜYÜKNACAR H. S., GÖÇMEN C., de Groat W. C., KUMCU E., Wu H., ÖNDER S.

JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, cilt.333, sa.1, ss.228-235, 2010 (SCI-Expanded) identifier identifier identifier

Özet

The present study was undertaken to compare the effects of the thiol reagents L-cysteine and (diazene dicarboxylic acid bis 5N,N-dimethylamide) diamide on contractile activity of neonatal and adult rat bladders. In vitro whole-bladder preparations from Wistar rats were used to study the modulation of spontaneous bladder contractions by thiol reagents. After blocking cholinergic and adrenergic transmission with atropine and guanethidine, L-cysteine facilitated spontaneous bladder contractions in neonatal rat bladders. The effect of L-cysteine was suppressed by diamide. Diamide alone did not change basal activity of the neonatal rat bladder. The facilitatory effects of L-cysteine were reduced by the L-type Ca2+ channel-blocking agent nifedipine and the calcium-activated K+ channel opener NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one]. ATP or suramin, a purinergic receptor antagonist, significantly inhibited the effect of L-cysteine in neonatal bladders, whereas the nitric-oxide synthase inhibitor N-omega-nitro-L-arginine was ineffective. L-cysteine did not elicit any detectable effects in the adult rat bladder; whereas diamide caused a large-amplitude sustained tonic contraction. The contraction induced by diamide in adult bladder did not occur when the preparation was pretreated with L-cysteine. Also, L-Cysteine administered during the diamide-evoked contraction completely inhibited the contraction to diamide. In conclusion, our results suggest that L-cysteine has markedly different effects in isolated whole-bladder preparations from neonatal and adult rats. Thus thiol-sensitive mechanisms may modulate contractility by regulation of Ca2+ and K+ channels and/or purinergic transmission in the neonatal bladder. The effects of L-cysteine and diamide were reversed in adult bladders, indicating that the regulation of bladder contractility by thiols is markedly altered during postnatal development.