Energy distribution analyses of an additional traction battery on hydrogen fuel cell hybrid electric vehicle


Tanc B., ARAT H. T., CONKER Ç., BALTACIOĞLU E., AYDIN K.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, cilt.45, sa.49, ss.26344-26356, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 49
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.ijhydene.2019.09.241
  • Dergi Adı: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Artic & Antarctic Regions, Chimica, Communication Abstracts, Compendex, Environment Index, INSPEC
  • Sayfa Sayıları: ss.26344-26356
  • Çukurova Üniversitesi Adresli: Evet

Özet

Hydrogen is the most abundant element in the world and produces only water vapor as a result of chemical reaction that occurred in fuel cells. Therefore, fuel cell electric vehicles, which use hydrogen as fuel, continue its growing trend in the sector. In this study, an energy distribution comparison is carried out between fuel cell electric vehicle and fuel cell hybrid electric vehicle. Hybridization of fuel cell electric vehicle is designed by equipped a traction battery (15 kW). Modeled vehicles were prepared under AVL Cruise program with similar chassis and same fuel cell stacks for regular determining process. Numerical analyses were presented and graphed with instantaneous results in terms of sankey diagrams with a comparison task. WLTP driving cycle is selected for both vehicles and energy input/output values given with detailed analyses. The average consumption results of electric and hydrogen usage is found out as 4.07 kWh and 1.125 kg/100 km respectively for fuel cell electric vehicle. On the other hand, fuel cell hybrid electric vehicle's average consumption results figured out as 3.701 kWh for electric and 0.701 kg/100 km for hydrogen consumption. As a result of this study, fuel cell hybrid electric vehicle was obtained better results rather than fuel cell electric vehicle according to energy and hydrogen consumption with 8% and 32%, respectively. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.