Machine Learning Approaches for One-Day Ahead Soil Temperature Forecasting


Bilgili M., Ünal Ş., Şekertekin A., Gürlek C.

TARIM BILIMLERI DERGISI, cilt.29, sa.1, ss.221-238, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.15832/ankutbd.997567
  • Dergi Adı: TARIM BILIMLERI DERGISI
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.221-238
  • Çukurova Üniversitesi Adresli: Evet

Özet

Present study investigates the capabilities of six distinct machine learning techniques such as ANFIS network with fuzzy c-means (ANFIS-FCM), grid partition (ANFIS-GP), subtractive clustering (ANFIS-SC), feed-forward neural network (FNN), Elman neural network (ENN), and long short-term memory (LSTM) neural network in one-day ahead soil temperature (ST) forecasting. For this aim, daily ST data gathered at three different depths of 5 cm, 50 cm, and 100 cm from the Sivas meteorological observation station in the Central Anatolia Region of Turkey was used as training and testing datasets. Forecasting values of the machine learning models were compared with actual data by assessing with respect to four statistic metrics such as the mean absolute error, root mean square error (RMSE), Nash−Sutcliffe efficiency coefficient, and correlation coefficient (R). The results showed that the ANFIS-FCM, ANFIS-GP, ANFIS-SC, ENN, FNN and LSTM models presented satisfactory performance in modeling daily ST at all depths, with RMSE values ranging 0.0637-1.3276, 0.0634-1.3809, 0.0643-1.3280, 0.0635-1.3186, 0.0635-1.3281, and 0.0983-1.3256 °C, and R values ranging 0.9910-0.9999, 0.9903-0.9999, 0.9910-0.9999, 0.9911-0.9999, 0.9910-0.9999 and 0.9910-0.9998 °C, respectively.