Improving blueberry cold storage quality: the effect of preharvest hexanal application on chilling injuries and antioxidant defense mechanisms


Sönmez D. A., Öz A. T., Ali M. A., YAŞA KAFKAS N. E., BİLGİN Ö. F.

Journal of the Science of Food and Agriculture, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2024
  • Doi Number: 10.1002/jsfa.13710
  • Journal Name: Journal of the Science of Food and Agriculture
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Periodicals Index Online, Aerospace Database, Agricultural & Environmental Science Database, Analytical Abstracts, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Food Science & Technology Abstracts, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, DIALNET, Civil Engineering Abstracts
  • Keywords: antioxidant, blueberry, chilling injury, enzyme, hexanal, postharvest, quality
  • Çukurova University Affiliated: Yes

Abstract

Blueberries are vulnerable to chilling injury (CI). This can lead to limited longevity when they are subjected to cold storage conditions. This study investigated the effectiveness of a preharvest spray containing 0.02% hexanal in reducing CI and improving the postharvest storage quality of ‘Star’ and ‘Biloxi’ blueberries. The blueberries were stored for a period of 5 weeks at 2 °C and in 90% relative humidity (RH). The findings revealed that the preharvest hexanal spraying of both cultivars delayed senescence by mitigating CI, as evidenced by the bolstering of the antioxidant defense system through increased superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and phenylalanine ammonia lyase (PAL) enzyme activity. The treated fruit also maintained elevated levels of total phenol content (TPC), total flavonoids (TFC), and vitamin C, demonstrating enhanced free radical scavenging capacity (FRSC), while exhibiting reduced polyphenoloxidase (PPO) activity, and reduced malondialdehyde (MDA), and H2O2 content in comparison with the control group. The preharvest hexanal treatment also suppressed fruit softening by maintaining greater firmness and higher membrane stability index (MSI) scores, inhibiting the activity of polygalacturonase (PG), pectinmethylesterase (PME), xylanase, and α-amylase, and reducing microbial counts (MC) and incidence of decay (DI) in comparison with the control. Preharvest hexanal treatment also improved the overall storage quality by reducing weight loss, total soluble solids (TSS), pH, and the TSS/acid ratio, while increasing titratable acidity (TA) in comparison with the control during cold storage. The findings suggest that hexanal, as a preharvest application, delays senescence effectively and preserves overall quality by enhancing cold tolerance through antioxidant defense mechanisms in blueberry storage under cold conditions. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.