The effects of Fe2O3 based DOC and SCR catalyst on the exhaust emissions of diesel engines


REŞİTOĞLU İ. A., ALTINIŞIK K., KESKİN A., Ocakoglu K.

FUEL, cilt.262, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 262
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.fuel.2019.116501
  • Dergi Adı: FUEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Agricultural & Environmental Science Database, Biotechnology Research Abstracts, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Pollution Abstracts, Civil Engineering Abstracts
  • Çukurova Üniversitesi Adresli: Evet

Özet

The effects of Fe2O3 based DOCs (Diesel Oxidation Catalyst) and SCR (Selective Catalytic Reduction) catalysts on the exhaust emissions of diesel engine were investigated in this experimental study. The investigated catalysts, Al2O3 - TiO2/CeO2/Fe2O3 (ATCF) and Al2O3- Nb2O5/CeO2/Fe2O3 (ANCF), were produced with impregnation method and aged for 6 h at 600 degrees C. FE-SEM (Field Emission Scanning Electron Microscopy), XRD (X-Ray Diffraction), XRF (X-Ray Fluorescence) and BET (Brunauer-Emmett-Teller) Surface Area analyzes were carried out to determine the specifications of catalysts. The catalytic performances of the DOCs were tested for the oxidation of CO, HC, PM, NO while SCR catalysts were tested for SCR of NOx using NH3. An individual exhaust system was built up and mounted to the engine for tests of catalysts. An electronic control system and a software were developed to control the SCR system. After the completion of experimental setup, catalysts placed inside the exhaust system were subjected to the engine tests to determine their effects on the exhaust emissions. Tests were carried out under actual working conditions with a single cylinder direct injection diesel engine. In conclusion, the catalysts made significant decrease in pollutant emissions while brake specific fuel consumption (BSFC) increased slightly. ANCF released better conversion efficiency in all pollutant emissions compared to the ATCF. Maximum decreases in CO, HC and NOx emissions, which are resulted from ANCF catalyst, were obtained at a rate of 83.51%, 80.83% and 80.29% respectively.