On the origin of the late-flowering ppd-H1 allele in barley


Sharma R., Shaaf S., Neumann K., Civan P., Guo Y., Mascher M., ...Daha Fazla

Theoretical and Applied Genetics, cilt.138, sa.10, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 138 Sayı: 10
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1007/s00122-025-04981-1
  • Dergi Adı: Theoretical and Applied Genetics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Compendex, Veterinary Science Database
  • Çukurova Üniversitesi Adresli: Evet

Özet

To breed for climate resilient crops, an understanding of the genetic and environmental factors influencing adaptation is critical. Barley provides a model species to study adaptation to climate change. Here we present a detailed analysis of genetic variation at a major photoperiod response locus and relate this to the domestication history and dispersal of barley. The PPD-H1 locus (a PSEUDO-RESPONSE REGULATOR 7) promotes flowering under long-day conditions, and a natural mutation at this locus resulted in a recessive, late-flowering ppd-H1 allele. This mutation proved beneficial in high-latitude environments such as Northern Europe, where it allows extended vegetative growth during long spring days. We infer the origin of the mutated late-flowering ppd-H1 allele by re-sequencing a large geo-referenced collection of 942 Hordeum spontaneum, 5 Hordeum agriocrithon and 1110 domesticated (Hordeum vulgare) barleys. We demonstrate that the late-flowering phenotype originated from Desert-type wild barley in the Southern Levant and present evidence suggesting a post-domestication origin of the mutated ppd-H1 allele.