Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K,Na)NbO3


Creative Commons License

EICHEL R. , Eruenal E., Jakes P., KOERBEL S., ELSAESSER C., Kungl H., ...More

APPLIED PHYSICS LETTERS, vol.102, no.24, 2013 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 102 Issue: 24
  • Publication Date: 2013
  • Doi Number: 10.1063/1.4811268
  • Title of Journal : APPLIED PHYSICS LETTERS

Abstract

"Lead-free" piezoelectric sodium potassium niobate has been studied with respect to its defect structure when doping with CuO. The results indicate that two kinds of mutually compensating charged defect complexes are formed, (Cu-Nb''' - V-O(center dot center dot))' and (V-O(center dot center dot) - Cu-Nb''' - V-O(center dot center dot))(center dot). Concerning the interplay of these defect complexes with the piezoelectric materials properties, the trimeric (V-O(center dot center dot) - Cu-Nb''' - V-O(center dot center dot))(center dot) defect complex primarily has an elastic dipole moment and thus is proposed to impact the electromechanical properties, whereas the dimeric (Cu-Nb''' - V-O(center dot center dot))' defect possesses an electric dipole moment in addition to an elastic distortion. Both types of defect complexes can impede domain-wall motion and may contribute to ferroelectric "hardening." (C) 2013 AIP Publishing LLC.