Role of rye chromosomes in improvement of zinc efficiency in wheat and triticale


Çakmak İ., Derici R., Torun B. , Tolay İ., Braun H., Schlegel R.

PLANT AND SOIL, cilt.196, ss.249-253, 1997 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 196 Konu: 2
  • Basım Tarihi: 1997
  • Doi Numarası: 10.1023/a:1004210309876
  • Dergi Adı: PLANT AND SOIL
  • Sayfa Sayısı: ss.249-253

Özet

Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. ''PlutoxFakon'') as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg(-1) soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the IR line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64 % for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.
Abstract

Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. ''PlutoxFakon'') as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg(-1) soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the IR line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64 % for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.

The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions.