AXIOMS, cilt.6, sa.4, 2017 (ESCI)
This study proposes a mathematical model of dynamic pricing for soccer game tickets. The logic behind the dynamic ticket pricing model is price change based on multipliers which reflect the effects of time and inventory. Functions are formed for the time and inventory multipliers. The optimization algorithm attempts to find optimal values of these multipliers in order to maximize revenue. By multiplying the mean season ticket price (used as the reference price) by the multipliers, dynamic ticket prices are obtained. Demand rates at different prices are needed for the model, and they are provided by a unique fuzzy logic model. The results of this model are compared with real data to test the model's effectiveness. According to the results of the dynamic pricing model, the total revenue generated is increased by 8.95% and 0.76% compared with the static pricing strategy in the first and second cases, respectively. The results of the fuzzy logic model are also found to be competitive and effective. This is the first time a fuzzy logic model has been designed to forecast the attendance of soccer games. It is also the first time this type of mathematical model of dynamic pricing for soccer game tickets has been designed.