Support vector machines combined with feature selection for breast cancer diagnosis


Akay M. F.

EXPERT SYSTEMS WITH APPLICATIONS, vol.36, no.2, pp.3240-3247, 2009 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 36 Issue: 2
  • Publication Date: 2009
  • Doi Number: 10.1016/j.eswa.2008.01.009
  • Journal Name: EXPERT SYSTEMS WITH APPLICATIONS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.3240-3247
  • Çukurova University Affiliated: Yes

Abstract

Breast cancer is the second largest cause of cancer deaths among women. At the same time, it is also among the most curable cancer types if it can be diagnosed early. Research efforts have reported with increasing confirmation that the support vector machines (SVM) have greater accurate diagnosis ability. In this paper, breast cancer diagnosis based oil a SVM-based method combined with feature selection has been proposed. Experiments have been conducted oil different training-test partitions of the Wisconsin breast cancer dataset (WBCD), which is commonly used among researchers who use machine learning methods for breast cancer diagnosis. The performance of the method is evaluated using classification accuracy, sensitivity, specificity, positive and negative predictive values, receiver operating characteristic (ROC) curves and confusion matrix. The results show that the highest classification accuracy (99.51%) is obtained for the SVM model that contains five features, and this is very promising compared to the previously reported results. (C) 2008 Elsevier Ltd. All rights reserved.