Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations


ALTINTAŞ O., AKSOY M., ÜNAL E.

PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, vol.116, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 116
  • Publication Date: 2020
  • Doi Number: 10.1016/j.physe.2019.113734
  • Journal Name: PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, INSPEC
  • Keywords: Metamaterial, Dielectric, Fuel adulteration, Oil condition, NEGATIVE REFRACTIVE-INDEX, ABSORBER, PERMITTIVITY, MIXTURES, FLUID
  • Çukurova University Affiliated: Yes

Abstract

In this study, the omega shaped resonator based sensor structure by inspiring of metamaterial (MTM) concept is presented at X-band frequency regime for industrial purpose both numerically and experimentally. Four distinguishing applications which are (i) authentic and inauthentic gasoline samples, (ii) authentic and inauthentic diesel samples, (iii) clean and waste lubricant samples and (iv) clean and waste transformer oil samples have been realized by determining dielectric properties of them. Although there are close dielectric constant values between the samples (about 0.65 for (i), 0.25 for (ii), 0.10 for (iii) and 0.15 for (iv)), the proposed sensor sensitively discriminates all sample groups with about a frequency shift of 350 MHz for (i), 180 MHz for (ii), 60 MHz for (iii) and 70 MHz for (iv). Sensor structure can be efficiently used many industrial applications since the results are sensitively and precisely obtained for proposed studies. In addition, the proposed sensor is durable, suitable for real-time applications and long-term stability considering the fabrication technique and nondestructive measurement method.