WO3/α-Fe2O3/Bi2S3 ternary photoanode for improved oxygen evolution reaction in photoelectrochemical water splitting


Tezcan F., Ahmad A., KARDAŞ G.

Turkish Journal of Chemistry, cilt.49, sa.2, ss.176-190, 2025 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 49 Sayı: 2
  • Basım Tarihi: 2025
  • Doi Numarası: 10.55730/1300-0527.3720
  • Dergi Adı: Turkish Journal of Chemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.176-190
  • Anahtar Kelimeler: hydrothermal, photoelectrochemical water splitting, Photoelectrode, reaction (SILAR) method, successive ionic layer adsorption, ternary heterojunction
  • Çukurova Üniversitesi Adresli: Evet

Özet

This study presents a ternary WO3/α-Fe2O3/Bi2S3 photoanode system suitable for photoelectrochemical water-splitting applications. WO3/α-Fe2O3 heterojunction is obtained using a hydrothermal approach, while Bi2S3 is deposited onto WO3/α-Fe2O3 via the successive ionic layer adsorption and reaction (SILAR) method. The cycle count is adjusted to determine the optimal photocatalytic photoanode. X-ray diffraction analysis confirms different morphologies and phases for the photoelectrodes: WO3 is deposited as plates with monoclinic phases, α-Fe2O3 as nanorods with hexagonal phases, and Bi2S3 in the form of nanoparticles (NPs) with orthorhombic phases. Solar light absorption spectra indicate that ternary WO3/α-Fe2O3/Bi2S3 photoanodes absorb a larger portion of the solar spectrum and display a large red shift in wavelength compared to binary WO3/α-Fe2O3 photoanodes. Chronoamperometric and electrochemical impedance spectroscopy measurements indicate that the as-prepared WO3/α-Fe2O3/Bi2S3 photoanode exhibits notable stability and low charge transfer resistance (Rct) compared to binary electrodes and pristine WO3 plates in faradaic photoelectrochemical conversion for the oxygen evolution reaction and S–2/S2 processes. Linear sweep voltammetry studies show that the WO3/α-Fe2O3/Bi2S3 photoanode, sensitized with 8 SILAR cycles, achieves the maximum photocurrent density of 5.777 mA.cm–2 at 1.0 V vs. RHE under 100 mW cm–2 simulated solar irradiation.