Unlocking the Potential of Pepper Plants under Salt Stress: Mycorrhizal Effects on Physiological Parameters Related to Plant Growth and Gas Exchange across Tolerant and Sensitive Genotypes


Creative Commons License

Altuntas O., DAŞGAN H. Y., Akhoundnejad Y., Nas Y.

Plants, cilt.13, sa.10, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13 Sayı: 10
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/plants13101380
  • Dergi Adı: Plants
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, BIOSIS, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: Arbuscular mycorrhizal fungi (AMFs), Capsicum annuumL, leaf water potential, NaCl stress, photosynthesis, plant growth, stomatal conductance
  • Çukurova Üniversitesi Adresli: Evet

Özet

Agriculture is confronted with the challenge of ensuring global food security, yet the rapid expansion of salinity stress undoubtedly restricts plant productivity in cultivable areas, posing a significant threat to crop yields. Arbuscular mycorrhizal fungi (AMFs) have emerged as a biological tool for enhancing plant salt stress tolerance. To utilize this biological tool, this study evaluated the response in growth and physiological parameters of tolerant (Karaisali) and sensitive (Demre) pepper genotypes. The experiment involved mycorrhizal-treated (Glomus clarium) and non-mycorrhizal (control) plants of both the tolerant and sensitive pepper genotypes. The plants were subjected to two salt doses: 75 and 150 mM. The plant growth and physiological parameters were measured at 40 days after transplanting. The mycorrhizal activity was found to be significantly more effective in the sensitive genotype. We found notable differences in mycorrhizal activity between the pepper genotypes under salt stress conditions, with the sensitive genotype “Demre” showing greater responsiveness to mycorrhizal association compared with the “Karaisali” variety. Under both moderate (75 mM NaCl) and higher salt stress levels (150 mM NaCl), both the “Karaisali” and “Demre” varieties exhibited substantial increases in their shoot dry weights. However, these increases were consistently higher in the “Demre” plants. Moreover, the AMFs demonstrated significant enhancements in photosynthesis rates under both moderate and high salinity levels in both genotypes. Overall, our findings suggest that AMFs play a crucial role in improving plant growth, water status, and photosynthesis characteristics, particularly in salt-sensitive pepper genotypes, under moderate-to-high salinity levels. In conclusion, the plant growth, water status, and photosynthesis characteristics of the salt-sensitive pepper genotype were significantly improved by AMFs at medium and high salinity levels, such as 75 mM and 150 mM NaCl, respectively.