Total porosity, theoretical analysis, and prediction of the air permeability of woven fabrics


OĞULATA R. T., Mezarcioz S. (.

JOURNAL OF THE TEXTILE INSTITUTE, cilt.103, sa.6, ss.654-661, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 103 Sayı: 6
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1080/00405000.2011.597567
  • Dergi Adı: JOURNAL OF THE TEXTILE INSTITUTE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.654-661
  • Anahtar Kelimeler: air permeability, porosity, woven fabric, prediction
  • Çukurova Üniversitesi Adresli: Evet

Özet

Air permeability is one of the most important properties of textile materials that ensure their comfort. For many materials for technical applications (filters, sails, vacuum cleaners, parachutes, etc.), this is one of the main properties that determine their quality. The air permeability of woven textile fabrics depends on many parameters of fabric. Thus, the determination of air permeability of woven fabric is highly complex and difficult. In this study, we attempted to establish a theoretical model for the porosity and predicted the air permeability of woven fabrics. A theoretical model was created to predict the total porosity and the air permeability of a fabric structure depending on the geometrical parameters such as pore size, warp density, weft density, fabric thickness, number of yarn, diameter of yarn, and fiber density. For the purpose, a theoretical model of porous systems on D'Arcy's law was used, and the validity of the model was confirmed by experimental results using 100% cotton and 97/3 cotton/lycra woven fabrics. Since the amount of air passing through both the pores between yarns and the interstices in the fibers constituting the yarn structure was calculated, theoretical values of air permeability were obtained very close to the experimental values.