Multicomponent stress-strength reliability estimation for the standard two-sided power distribution


Creative Commons License

Cetinkaya C., Genc A. İ.

HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, cilt.51, sa.2, ss.587-605, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 51 Sayı: 2
  • Basım Tarihi: 2022
  • Doi Numarası: 10.15672/hujms.936632
  • Dergi Adı: HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, zbMATH, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.587-605
  • Anahtar Kelimeler: Bayesian estimation, maximum likelihood estimation, reliability, stress-strength model, two-sided power distribution
  • Çukurova Üniversitesi Adresli: Evet

Özet

A system of k components that functions as long as at least s components survive is termed as s-out-of-k:G system, where G refers to "good". In this study, we consider the s-outof-k:G system when X-1, X-2, ..., X-k are independent and identically distributed strength components and each component is exposed to common random stress Y when the underlying distributions all belong to the standard two-sided power distribution. The system is regarded as surviving only if at least s out of k (1 < s < k) strengths exceed the stress. The reliability of such a system is the surviving probability and is estimated by using the maximum likelihood and Bayesian approaches. Parametric and nonparametric boot-strap confidence intervals for the maximum likelihood estimates and the highest posterior density confidence intervals for Bayes estimates by using the Markov Chain Monte Carlo technique are obtained. A real data set is also analyzed to illustrate the performances of the estimators.