Next-level vegetation health index forecasting: A ConvLSTM study using MODIS Time Series


KARTAL S., IBAN M. C., SEKERTEKIN A.

Environmental Science and Pollution Research, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2024
  • Doi Number: 10.1007/s11356-024-32430-x
  • Journal Name: Environmental Science and Pollution Research
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Keywords: ConvLSTM, Forecasting, LST, MODIS, NDVI, Remote sensing, Vegetation Health Index (VHI)
  • Çukurova University Affiliated: Yes

Abstract

The Vegetation Health Index (VHI) is a metric used to assess the health and condition of vegetation, based on satellite-derived data. It offers a comprehensive indicator of stress or vigor, commonly used in agriculture, ecology, and environmental monitoring for forecasting changes in vegetation health. Despite its advantages, there are few studies on forecasting VHI as a future projection, particularly using up-to-date and effective machine learning methods. Hence, the primary objective of this study is to forecast VHI values by utilizing remotely sensed images. To achieve this objective, the study proposes employing a combined Convolutional Neural Network (CNN) and a specific type of Recurrent Neural Network (RNN) called Long Short-Term Memory (LSTM), known as ConvLSTM. The VHI time series images are calculated based on the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. In addition to the traditional image-based calculation, the study suggests using global minimum and global maximum values (global scale) of NDVI and LST time series for calculating the VHI. The results of the study showed that the ConvLSTM with a 1-layer structure generally provided better forecasts than 2-layer and 3-layer structures. The average Root Mean Square Error (RMSE) values for the 1-step, 2-step, and 3-step ahead VHI forecasts were 0.025, 0.026, and 0.026, respectively, with each step representing an 8-day forecast horizon. Moreover, the proposed global scale model using the applied ConvLSTM structures outperformed the traditional VHI calculation method.