Physiological and behavioral basis for the successful adaptation of goats to severe water restriction under hot environmental conditions


Creative Commons License

Kaliber M., KOLUMAN N. , SILANIKOVE N.

ANIMAL, cilt.10, sa.1, ss.82-88, 2016 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 10 Konu: 1
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1017/s1751731115001652
  • Dergi Adı: ANIMAL
  • Sayfa Sayıları: ss.82-88

Özet

Among domestic ruminants, goats are renowned for their ability to tolerate water deprivation, water restriction and energy restriction. However, some basic questions regarding their ability to endure water restriction under heat stress are still open. Three levels of water restriction (56%, 73% and 87% of the ad libitum) were imposed on 20 cross-bred 3-year-old female goats (75% German Fawn and 25% Hair Goat) distributed into four groups, with five animals per treatment. The experiment was conducted from the beginning of July to the end of August in a farm located in the Eastern Mediterranean region of Turkey (40 m in altitude; 36 59' N, 35 18'E), in which subtropical weather conditions prevail. The average daily temperature during the experiment was 34.2 degrees C, whereas the highest and lowest temperatures were 42 degrees C and 23.1 degrees C, respectively. The average relative humidity was 68.2% and wind speed was 1.2 km/h. Weekly average thermal heat indexes during the experiment were 78.3 (week 1), 79.1 (week 2), 80.1 (weak 3), 79.8 (weak 4), 81.3 (weak 5) and on average 79.7. Feed intake, heart rate, thermoregulatory responses (rectal temperature, respiration rate), blood plasma concentrations of ions (Na, K), antidiuretic hormone (ADH), metabolites (glucose, cholesterol, creatinine and urea) and behavioral aspects (standing, walking, lying) were studied over 30 days. The responses to water restriction were proportional to the level of restriction. The reductions in feed intake (up to 13%), BW (up to 4.6%) and the increases in rectal temperature (0.5 degrees C) and breath rate (10 respirations/min) were moderate and also were far from responses encountered under severe heat and water stresses. The increase in plasma Na (from 119 to 140 mM) and ADH concentrations (from 12.6 to 17.4 pg/ml) indicates that the physiological response to water restriction was in response to mild dehydration, which also explains the increase in blood plasma concentrations of glucose, cholesterol, creatinine and urea. Behavioral responses (reduction in walking from 226 to 209 min/day and increase in lying from 417 to 457 min/day) were associated with conservation of energy or thermoregulation (reducing the exposure to direct radiation).