Inhibitive effect of 4-amino-N-benzylidene-benzamide Schiff base on mild steel corrosion in HCl solution


Sahin E. A., Tezcan F., SOLMAZ R., KARDAŞ G.

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, cilt.34, sa.2, ss.135-152, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 34 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1080/01694243.2019.1662202
  • Dergi Adı: JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.135-152
  • Anahtar Kelimeler: Schiff base, mild steel, corrosion, AZ91D MAGNESIUM ALLOY, CARBON-STEEL, ACID, ADSORPTION, ALUMINUM, BENZIMIDAZOLE, DERIVATIVES, COMPOUND, MEDIA
  • Çukurova Üniversitesi Adresli: Evet

Özet

A newly Schiff base, 4-amino-N-benzylidene-benzamide (4-BAB) protection ability was synthesised from a condensation reaction of 4-aminobenzamide (4-AB) and benzaldehyde (BA). Adsorption and corrosion inhibition effect of this compound on mild steel (MS) in 1.0 M HCl solution were studied. The data obtained from measurments of this compound were compared with that of 4-AB and BA using many electrochemical, microscopic and hydrogen gas evolution techniques to clarify superiority of the Schiff base. Some thermodynamic parameters were calculated from experimental results and discussed. The value of Delta G(ads) showed that adsorption of 4-BAB on MS from acidic solution obeys the Langmuir adsorption isotherm model. Surface SEM images of the MS specimens which were exposed to 1.0 M HCl solution in the absence and presence of the inhibitors showed that a homogeneous and protective inhibitor film forms on the metal surface, which hinder corrosive attack. It was concluded that synthesising the Schiff base improves protection ability with respect to related amine and aldehyde and the inhibitive action is in the order of 4-BAB > 4-AB > BA.