Atıf İçin Kopyala
DURĞUN Y., ÇOBANKAYA A.
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, cilt.27, sa.3, ss.83-95, 2019 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
27
Sayı:
3
-
Basım Tarihi:
2019
-
Doi Numarası:
10.2478/auom-2019-0035
-
Dergi Adı:
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus
-
Sayfa Sayıları:
ss.83-95
-
Anahtar Kelimeler:
(tau-)closed submodule, proper class, pure submodule, Goldie's torsion theory, Dickson's torsion theory, MODULES
-
Çukurova Üniversitesi Adresli:
Evet
Özet
The main object of this paper is to study relative homological aspects as well as further properties of tau-closed submodules. A submodule N of a module M is said to be tau-closed (or tau-pure) provided that M/N is tau-torsion-free, where tau stands for an idempotent radical. Whereas the well-known proper class Closed (Pure) of closed (pure) short exact sequences, the class tau - closed of tau-closed short exact sequences need not be a proper class. We describe the smallest proper class containing tau - Closed, through tau-closed submodules. We show that the smallest proper class is the proper classes projectively generated by the class of tau-torsion modules and coprojectively generated by the class of tau-torsion-free modules. Also, we consider the relations between the proper class and some of well-known proper classes, such as Closed; Pure.