Arithmetic progressions in certain subsets of finite fields


Eyidoğan S., Göral H., Kutlu M. K.

FINITE FIELDS AND THEIR APPLICATIONS, cilt.91, ss.1-59, 2023 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 91
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.ffa.2023.102264
  • Dergi Adı: FINITE FIELDS AND THEIR APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.1-59
  • Çukurova Üniversitesi Adresli: Hayır

Özet

In this note, we focus on how many arithmetic progressions we have in certain subsets of finite fields. For this purpose, we consider the sets $S_p =\{t^2: t\in \mathbb{F}_{p} \}$ and $C_{p} = \left\lbrace t^{3} : \ t \in \mathbb{F}_{p}\right\rbrace $, and we use the results on Gauss and Kummer sums. We prove that for any integer $ k \ge 3 $ and for an odd prime number $ p $, the number of $ k$-term arithmetic progressions in $ S_{p} $ is given by $$ \frac{p^{2}}{2^{k}}+ R,$$ where $$ \lvert R \rvert \le \bigg(\frac{k-2}{4}-\frac{k-2}{2^{k-1}}\bigg) \cdot p^{\frac{3}{2}} + c_{k} \cdot p $$ and $ c_{k} $ is a computable constant depending only on $ k $. The proof also uses finite Fourier analysis and certain types of Weil estimates. Also, we obtain some formulas that give the exact number of arithmetic progressions of length $ \ell $ in the set $ S_{p} $ when $ \ell \in \left\lbrace 3, 4, 5\right\rbrace $ and $ p $ is an odd prime number. For $\ell=4,5$, our formulas are based on the number of points on certain elliptic curves, and the error term is best possible due to the Sato-Tate conjecture.