An evaluation on microplastic accumulations in Turkish soils under different land uses


AKÇA M. O., GÜNDOĞDU S., AKÇA H., Delialioğlu R. A., Aksit C., TURGAY O. C., ...Daha Fazla

Science of the Total Environment, cilt.911, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 911
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.scitotenv.2023.168609
  • Dergi Adı: Science of the Total Environment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Agricultural soil, Plasticulture, Soil pollution, Urban soil
  • Çukurova Üniversitesi Adresli: Evet

Özet

Microplastic (MP) pollution is now widely reported in soil ecosystems. However, the level of this pollution in soil ecosystems has not been sufficiently elucidated. Moreover, there is little understanding of how land use conditions affect the occurrence and distribution of MPs in soils. Therefore, this study examined 55 soil samples (44 agricultural and 11 urban) from the Mediterranean, Aegean, and Marmara regions of Türkiye, representing both agricultural and urban land uses. The samples were analyzed for MP distribution characteristics, such as abundance, shape, size, color, and type. Different types of MPs were detected in the soil samples, and their averages in agricultural and urban soils were 192.7 ± 14.2 and 127.3 ± 21.6 particles kg−1, respectively. MP abundance in the soil exhibited variations between different land uses, with agricultural areas showing higher levels compared to urban areas. In agricultural soils, MPs were predominantly blue-colored (44.6 %), in the form of fibers (74.9 %), smaller than 1000 μm (66.1 %), and primarily constituted polyethylene (90.8 %). In urban areas, MPs were also blue-colored (54.7 %), had a fiber shape (64.2 %), smaller than 1000 μm (70.6 %), and mostly belonged to the polyethylene category (78.5 %). A significant difference in MP concentrations was observed between agricultural and urban areas, reflecting the influence of distinct land uses on MP levels. Moreover, Principal Component Analysis (PCA) revealed that soil properties, including pH, electrical conductivity, organic matter, aggregate stability, average weight diameter, sand, clay, and silt, emerged as the primary determinants influencing the abundance and size of MPs within the soil. These findings contribute valuable insights into the origins of soil MPs and the intricate connections between MPs and varying soil characteristics across diverse land use categories.