Neural network modeling of voltage-dependent resistance of metallic carbon nanotube interconnects: An ab initio study

Yamacli S., AVCI M.

EXPERT SYSTEMS WITH APPLICATIONS, cilt.37, ss.8014-8018, 2010 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 37 Konu: 12
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1016/j.eswa.2010.05.089
  • Sayfa Sayıları: ss.8014-8018


In this work, development voltage-dependent resistance models of metallic carbon nanotubes for computer aided design tools is aimed. Firstly, the resistance of metallic carbon nanotube interconnects are obtained from first principles simulations and the voltage dependence of the resistance is modeled through neural networks. Self-consistent non-equilibrium Green's function formalism combined with density functional theory is used for calculating the voltage-dependent resistance of metallic carbon nanotubes. It is shown that voltage dependent resistances of carbon nanotubes obtained from ab initio simulations can be accurately modeled via neural networks which enable rapid integration of carbon nanotube interconnect models into electronic design automation tools. (C) 2010 Elsevier Ltd. All rights reserved.