Assessment of the spatiotemporal prediction capabilities of machine learning algorithms on Sea Surface Temperature data: A comprehensive study


Creative Commons License

Kartal S.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, cilt.118, ss.1-11, 2023 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 118
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.engappai.2022.105675
  • Dergi Adı: ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-11
  • Çukurova Üniversitesi Adresli: Evet

Özet

Spatiotemporal time series prediction plays a crucial role in a wide range of applications. However, in most of the studies, spatial information was ignored and predictions were carried out either on a few points or on average values. In this study, 37 different configurations of 4 traditional ML models and 3 Neural Network (NN) based models were utilized to provide a comprehensive comparison and evaluate the spatiotemporal data prediction capabilities of the ML models. Additionally, to reveal the importance of spatial data for the time series prediction process, the best configuration of each ML model was evaluated with and without using spatial information. The utilized models were: (i) Linear Regression (LR), (ii) K-Nearest Neighbors (KNN), (iii) Decision-Trees (DT), (iv) Support Vector Machine (SVM), (v) Multi-Layer Perceptron (MLP), (vi) Long Short-Term Memory (LSTM), and (vii) Gated Recurrent Unit (GRU). The study was performed on the Sea Surface Temperature (SST) data collected by satellite radiometers via infrared measurements. The models were evaluated according to their one-month ahead spatiotemporal SST prediction performance over the southern coasts of Turkey, and the effects of spatial information on model performance were presented. Results reveal that the spatial information increased the prediction performance by approximately 25%, in terms of RMSE. Additionally, acquired results show that the LSTM model outperforms all other ML models and gives the smallest prediction errors in all metrics.