Lattice of Subinjective Portfolios of Modules


Creative Commons License

DURĞUN Y.

Journal of New Theory, sa.47, ss.11-19, 2024 (Hakemli Dergi) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.53570/jnt.1467235
  • Dergi Adı: Journal of New Theory
  • Derginin Tarandığı İndeksler: TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.11-19
  • Çukurova Üniversitesi Adresli: Evet

Özet

Given a ring $R$, we study its right subinjective profile $mathfrak{siP}(R)$ to be the collection of subinjectivity domains of its right $R$-modules. We deal with the lattice structure of the class $mathfrak{siP}(R)$. We show that the poset $(mathfrak{siP}(R),subseteq)$ forms a complete lattice, and an indigent $R$-module exists if $mathfrak{siP}(R)$ is a set. In particular, if $R$ is a generalized uniserial ring with $J^{2}(R)=0$, then the lattice $(mathfrak{siP}(R),subseteq,wedge, vee)$ is Boolean.