Lattice of Subinjective Portfolios of Modules


Creative Commons License

DURĞUN Y.

Journal of New Theory, no.47, pp.11-19, 2024 (Peer-Reviewed Journal) identifier

  • Publication Type: Article / Article
  • Publication Date: 2024
  • Doi Number: 10.53570/jnt.1467235
  • Journal Name: Journal of New Theory
  • Journal Indexes: TR DİZİN (ULAKBİM)
  • Page Numbers: pp.11-19
  • Çukurova University Affiliated: Yes

Abstract

Given a ring $R$, we study its right subinjective profile $mathfrak{siP}(R)$ to be the collection of subinjectivity domains of its right $R$-modules. We deal with the lattice structure of the class $mathfrak{siP}(R)$. We show that the poset $(mathfrak{siP}(R),subseteq)$ forms a complete lattice, and an indigent $R$-module exists if $mathfrak{siP}(R)$ is a set. In particular, if $R$ is a generalized uniserial ring with $J^{2}(R)=0$, then the lattice $(mathfrak{siP}(R),subseteq,wedge, vee)$ is Boolean.