Atıf İçin Kopyala
Goral H., Sertbas D. C.
INTERNATIONAL JOURNAL OF NUMBER THEORY, cilt.14, sa.4, ss.1033-1046, 2018 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
14
Sayı:
4
-
Basım Tarihi:
2018
-
Doi Numarası:
10.1142/s1793042118500628
-
Dergi Adı:
INTERNATIONAL JOURNAL OF NUMBER THEORY
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus
-
Sayfa Sayıları:
ss.1033-1046
-
Anahtar Kelimeler:
Hyperharmonic numbers, Wolstenholme's type congruences, SPECIAL VALUES, ZETA-FUNCTION, NUMBERS
-
Çukurova Üniversitesi Adresli:
Hayır
Özet
In 1862, Wolstenholme proved that the numerator of the (p - 1)th harmonic number is divisible by p(2) for any prime p >= 5. A variation of this theorem was shown by Alkan and Leudesdorf. Motivated by these results, we prove a congruence modulo some odd primes for some generalized harmonic type sums.