Polymer Composites, 2024 (SCI-Expanded)
In recent years, natural fibers have begun to replace synthetic fibers in automotive, building, and marine applications because of their sustainability, renewability, low cost, and availability of raw materials. However, because of their low strength, biocomposites are strengthened by hybridization with stronger synthetic fibers or adding fillers. This study reinforced high-cellulose jute fiber composites with cellulose-based almond (Prunus amygdalus) shell filler (ASF). Natural waste almond shells were ground to microparticle size. Hybrid composites were prepared by adding microparticulate ASF to the jute fiber composites at 0%, 1.5%, 3%, 4.5%, and 6% by weight. A comprehensive experimental study included tensile, flexural, Charpy impact (flat and edgewise), and shear tests. The addition of ASF significantly improved the mechanical properties of the jute fiber composites, and the best values were obtained with 3 wt.% ASF addition. Tensile, flexural, impact, and shear properties increased by 48.2%, 63.5%, 24.4%, and 52.2%, respectively. Scanning Electron microscopy (SEM) micrographs used in morphological structural analysis prove that the high mechanical values are achieved by ASF strengthening the interlaminar adhesion. This study contributed to developing a hybrid natural composite material reinforced with natural fillers that is stronger, environmentally friendly, and sustainable. Highlights: The organic structure of Almond Shell Filler (ASF) ensured the sustainability of natural composites. Cellulosic ASF significantly contributed to the structural stiffness and strength of jute fiber composites. ASF reduced voids, improved fiber-matrix bonding, and prevented debonding and delamination. ASF optimized the mechanical performance of jute fiber composites at 3%.