NEW COMPUTATIONAL MODELS FOR BETTER PREDICTIONS OF THE SOIL-COMPRESSION INDEX


Demir A.

ACTA GEOTECHNICA SLOVENICA, vol.12, no.1, pp.58-69, 2015 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 1
  • Publication Date: 2015
  • Title of Journal : ACTA GEOTECHNICA SLOVENICA
  • Page Numbers: pp.58-69
  • Keywords: compression index, statistical analysis, genetic expression programming, adaptive neuro-fuzzy, empirical equations, SHALLOW FOUNDATIONS, FUZZY, SETTLEMENT

Abstract

The compression index is one of the important soil parameters that are essential for geotechnical designs. Because laboratory and in-situ tests for determining the compression index (C-c) value are laborious, time consuming and costly, empirical formulas based on soil parameters are commonly used. Over the years a number of empirical formulas have been proposed to relate the compressibility to other soil parameters, such as the natural water content, the liquid limit, the plasticity index, the specific gravity. These empirical formulas provide good results for a specific test set, but cannot accurately or reliably predict the compression index from various test sets. The other disadvantage is that they tend to use a single parameter to estimate the compression index (Cc), even though Cc exhibits spatial characteristics depending on several soil parameters. This study presents the potential for Genetic Expression Programming (GEP) and the Adaptive Neuro-Fuzzy (ANFIS) computing paradigm to predict the compression index from soil parameters such as the natural water content, the liquid limit, the plastic index, the specific gravity and the void ratio. A total of 299 data sets collected from the literature were used to develop the models. The performance of the models was comprehensively evaluated using several statistical verification tools. The predicted results showed that the GEP and ANFIS models provided fairly promising approaches to the prediction of the compression index of soils and could provide a better performance than the empirical formulas.