Genetics of Hypogonadotropic Hypogonadism


TOPALOĞLU A. K., KOTAN L. D.

PUBERTY FROM BENCH TO CLINIC: LESSONS FOR CLINICAL MANAGEMENT OF PUBERTAL DISORDERS, cilt.29, ss.36-49, 2016 (SCI-Expanded) identifier identifier identifier

Özet

Hypogonadotropic hypogonadism (HH) often manifests as pubertal delay. A considerable proportion of cases of HH is due to genetic mutations. Recognizing those mutated genes and associated phenotypes may improve our diagnostic capabilities. GNRHR and TACR3 should be the first two genes to be screened in a clinical setting for equivocal cases such as constitutional delay in puberty versus idiopathic HH. In Kallmann syndrome (KS), according to the presence of certain accompanying clinical features, genetic screening for particular gene(s) may be prioritized: synkinesia (KAL1), dental agenesis (FGF8/FGFR1), bony anomalies (FGF8 /FGFR1), and hearing loss (CHD7, SOX10). FEZF1 has recently been added to the growing list of KS genes. Also, discovery of mutations in KISS1/KISS1R and TAC3 /TACR3 in kisspeptin and neurokinin B signaling, respectively, has provided major advancements in our understanding of the biology of the gonadotropin-releasing hormone pulse generator. Identification of further causative mutations accounting for the HH phenotype, which is now more feasible with the increasing popularity of whole exome sequencing, may provide deeper insight into the biology of the hypothalamic-pituitary-gonadal axis.