The effects of titanium nanoparticles on enzymatic and non-enzymatic biomarkers in female Wistar rats


Canli E. G., Gumus C., Canli M., Ila H. B.

DRUG AND CHEMICAL TOXICOLOGY, cilt.45, sa.1, ss.417-425, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1080/01480545.2019.1708925
  • Dergi Adı: DRUG AND CHEMICAL TOXICOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Environment Index, Food Science & Technology Abstracts, International Pharmaceutical Abstracts, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.417-425
  • Anahtar Kelimeler: Metal, titanium, nanoparticle, rat, biomarker, TEM, ALUMINUM-OXIDE NANOPARTICLES, DIOXIDE NANOPARTICLES, OXIDATIVE STRESS, INDUCED CYTOTOXICITY, TOXICITY, LIVER, TIO2, EXPOSURE, KIDNEY, COPPER
  • Çukurova Üniversitesi Adresli: Evet

Özet

Titanium dioxide (TiO2) nanoparticles (NPs) are widely used in industry, pharmacy, medicine, and food sectors. Therefore, this study deals with the effects of TiO2 NPs in female rats following oral administration in differing doses for 14 days (0, 0.5, 5, and 50 mg/kg b.w./d). The response of enzymatic biomarkers (Na,K-ATPase, Mg-ATPase, and AChE) was measured in the brain, kidney, and small intestine, while non-enzymatic biomarker levels, such as different forms of glutathione (GSH) and thiobarbituric acid reactive substances (TBARSs) were measured in the liver. The images of the tissues were obtained using a transmission electron microscope (TEM) to demonstrate TiO2 NP accumulation. Data showed that brain AChE activity decreased at all TiO2 NP doses, though brain ATPase activities increased. However, ATPase activities in the intestine and kidney did not change significantly. Levels of GSH forms did not change significantly, though there was a significant decrease in TBARS level at the highest NP dose. TEM images demonstrated that TiO2 NPs accumulated in a dose-dependent manner in the tissues. Data emphasized that the brain was the most sensitive organ against the effects of TiO2 NPs. This study suggests the need for further studies to evaluate better the toxic effects of TiO2 NPs.