Comparative elucidation of phenolic compounds in Albanian olive oils using LC-DAD-ESI-MS/MS


Topi D., GÜÇLÜ G., Kelebek H., SELLİ S.

JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES, cilt.43, ss.203-212, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 43
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1080/10826076.2019.1711117
  • Dergi Adı: JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Compendex, EMBASE, Food Science & Technology Abstracts, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.203-212
  • Anahtar Kelimeler: Albanian olive cultivar, virgin olive oil, Kalinjot, LC-DAD-ESI-MS, MS, PCA, phenolic compounds, HYDROPHILIC PHENOLS, SENSORY PROPERTIES, HEALTH, SPANISH
  • Çukurova Üniversitesi Adresli: Evet

Özet

Olive oils may provide health benefits, including the prevention of coronary heart diseases, cancers, and the modification of immune and inflammatory responses. These benefits mainly originate from the phenolic compounds found in olive oil. There has been no study on the advanced characterization of Albanian olive oils from various cultivars regarding phenolic compounds. Hence, a comprehensive characterization of phenolic compounds is carried out in Albanian monocultivar virgin olive oils from five different cultivars, including Kalinjot, Bardhi Tirana, Ulliri-i-Zi Tirana, Krips Kruja, and Bardhi Kruja for the first time. Liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI-MS/MS) is employed for the determination of phenolic compounds. In total, 18 compounds were identified in all samples, including phenolic alcohols, phenolic acids, secoiridoids, flavonoids, and phenolic aldehydes. Significant quantitative differences were detected among the cultivars, with the highest concentrations detected in virgin olive oil (VOO) from cv. Ulli-i-Zi. Secoiridoids were found in abundance, in general, followed by phenolic alcohols, and in this group, 3,4-DHPEA-EDA and p-HPEA-EDA stood out as dominant compounds, especially in Kalinjot virgin olive oils. Regarding phenolic alcohols, 3,4-DHPEA-AC was determined as the main phenolic compound. Phenolic profiles were found to be significantly different among the olive oil samples of different cultivars. Principal component analyses (PCA) displayed the differentiation of samples in terms of phenolic compounds.