LesionScanNet: dual-path convolutional neural network for acute appendicitis diagnosis


Hariri M., AYDIN A., Sıbıç O., Somuncu E., Yılmaz S., Sönmez S., ...More

Health Information Science and Systems, vol.13, no.1, 2025 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 1
  • Publication Date: 2025
  • Doi Number: 10.1007/s13755-024-00321-7
  • Journal Name: Health Information Science and Systems
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, EMBASE
  • Keywords: Acute appendicitis, CNN, Deep learning, Disease detection, Medical image classification
  • Çukurova University Affiliated: Yes

Abstract

Acute appendicitis is an abrupt inflammation of the appendix, which causes symptoms such as abdominal pain, vomiting, and fever. Computed tomography (CT) is a useful tool in accurate diagnosis of acute appendicitis; however, it causes challenges due to factors such as the anatomical structure of the colon and localization of the appendix in CT images. In this paper, a novel Convolutional Neural Network model, namely, LesionScanNet for the computer-aided detection of acute appendicitis has been proposed. For this purpose, a dataset of 2400 CT scan images was collected by the Department of General Surgery at Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey. LesionScanNet is a lightweight model with 765 K parameters and includes multiple DualKernel blocks, where each block contains a convolution, expansion, separable convolution layers, and skip connections. The DualKernel blocks work with two paths of input image processing, one of which uses 3 × 3 filters, and the other path encompasses 1 × 1 filters. It has been demonstrated that the LesionScanNet model has an accuracy score of 99% on the test set, a value that is greater than the performance of the benchmark deep learning models. In addition, the generalization ability of the LesionScanNet model has been demonstrated on a chest X-ray image dataset for pneumonia and COVID-19 detection. In conclusion, LesionScanNet is a lightweight and robust network achieving superior performance with smaller number of parameters and its usage can be extended to other medical application domains.