Effect of Ni-doping on the structural and electronic properties of metal halide perovskite CsSnBr3: a DFT study


Özcan M., Geçit F. H., ÇABUK S.

Physica Scripta, vol.99, no.7, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 99 Issue: 7
  • Publication Date: 2024
  • Doi Number: 10.1088/1402-4896/ad51b2
  • Journal Name: Physica Scripta
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Chemical Abstracts Core, Compendex, INSPEC, zbMATH
  • Keywords: bonding, CsSnBr3, electronic band gap, Ni-doped, supercell
  • Çukurova University Affiliated: Yes

Abstract

The structural and electronic properties of pure and Ni-doped perovskite CsSnBr3 in unit cell and supercell were computed using density functional theory at ambient pressure. Computed formation energy values of undoped and Ni-doped CsSnBr3 compounds show that these structures are stable. We used both standard DFT and HSE06 calculation in electronic band structure of pure and Ni-doped CsSnBr3 compounds. Since the band gap of undoped and Ni-doped CsSnBr3 compounds is located at the R symmetry point in the Brilloun zone, these compounds are materials with a direct band gap. In the HSE06 calculation, it was found that the band gap of 12.5% Ni doped-CsSnBr3 increased significantly from 1.1162 eV to 1.4343 eV. The electron charge density, Bader charge analysis and density of states reveal a strong covalent bond between Sn-Br (Ni-Br) and a strong ionic bond between Cs-Br. The direct electronic band gaps of undoped and Ni-doped CsSnBr3 perovskites in the visible energy range show that these compounds can be used effectively in optical applications.