
ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

MSc THESIS

Ammar Abbas ELMAS

INVESTIGATION OF SINGLE-RATE TRIANGULAR 3D

MESH COMPRESSION ALGORITHMS

DEPARTMENT OF COMPUTER ENGINEERING

ADANA-2019

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

INVESTIGATION OF SINGLE-RATE TRIANGULAR

3D MESH COMPRESSION ALGORITHMS

Ammar Abbas ELMAS

MSc THESIS

DEPARTMENT OF COMPUTER ENGINEERING

We certify that the thesis titled above was reviewed and approved for the award of

the degree of Master of Science by the board of jury on 11/01/2019

………………………………. …………………………………………... ………………………………………....

Assoc.Prof.Dr. Mustafa ORAL Assist.Prof.Dr. Buse Melis ÖZYILDIRIM Assist.Prof.Dr. Mümine KAYA KELEŞ

SUPERVISOR MEMBER MEMBER

This MSc Thesis is written at the Department of Institute of Natural and Applied

Sciences of Çukurova University

Registration Number:

 Prof. Dr. Mustafa GÖK

 Director

Institute of Natural and Applied Sciences

Note: The usage of the presented specific declarations, tables, figures, and photographs

either in this thesis or in any other reference without citation is subject to “The law

of Arts and Intellectual Products” number of 5846 of Turkish Republic.

I

ABSTRACT

MSc THESIS

INVESTIGATION OF SINGLE-RATE TRIANGULAR

3D MESH COMPRESSION ALGORITHMS

Ammar Abbas ELMAS

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

 Supervisor : Assoc. Prof. Dr. Mustafa ORAL

 Year: 2019, Pages: 95

 Jury : Assoc. Prof. Dr. Mustafa ORAL

: Assist. Prof. Dr. Buse Melis ÖZYILDIRIM

: Assist. Prof. Dr. Mümine KAYA KELEŞ

 In this thesis, currently available 3D mesh compression algorithms,

frameworks, libraries etc. are investigated. Especially, the algorithms that are

popular in survey papers but don’t have any implementation or had outdated

implementation or no published version is available, are gathered together and

compiled accordingly. According to the benchmark test results, current best general-

purpose data compression methods are identified and applied as the last stage of

mesh compression. Results are compared in order to demonstrate the current state of

single-rate 3D mesh compression performance with the current best general-purpose

data compression methods.

Keywords: 3D Mesh, Mesh Compression, Single-Rate Mesh Compression, 3D

Model Compression, Data Compression

II

ÖZ

YÜKSEK LİSANS TEZİ

STATİK ÜÇGENSEL 3 BOYUTLU ÖRGÜ SIKIŞTIRMA

ALGORİTMALARININ İNCELENMESİ

Ammar Abbas ELMAS

ÇUKUROVA ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

 Danışman : Doç. Dr. Mustafa ORAL

 Yıl: 2019, Sayfa: 95

 Jüri : Doç. Dr. Mustafa ORAL

: Dr. Öğr. Üyesi Mümine KAYA KELEŞ

: Dr. Öğr. Üyesi Buse Melis ÖZYILDIRIM

 Bu çalışmada günümüz şartlarında ulaşılabilen 3 boyutlu örgü sıkıştırma

algoritmaları, kütüphaneleri vs. incelenmiş olup akademide bir zamanlar popüler

fakat güncel bir koduna, çalışan uygulamasına ulaşılamayan algoritmalar

toparlanmış, derlenmiş ve statik üçgensel 3 boyutlu örgü sıkıştırmasında kullanılarak

sıkıştırma performansları karşılaştırılmıştır. Ayrıca örgü sıkıştırma algoritmalarının

son basamağı olan genel amaçlı veri sıkıştırma algoritmalarının testlere göre

günümüz en iyi sıkıştırma istatistiklerine sahip olanları bu derlenen algoritmalar ile

beraber kullanılarak toplamda en iyi sıkıştırma oranı elde edilmeye çalışılmıştır. Tek

çözünürlüklü 3B örgü sıkıştırma algoritmalarının performansları modern genel

amaçlı veri sıkıştırma yöntemleri ile birlikte kullanılarak sonuçlar birbirleri ile

karşılaştırılmıştır.

Anahtar Kelimeler: 3B Örgü, Örgü Sıkıştırma, 3B Model Sıkıştırma, Veri

Sıkıştırma

III

GENİŞLETİLMİŞ ÖZET

Geçtiğimiz 20 yılda dijital 3-boyutlu modeller gün geçtikçe daha fazla

öneme sahip olmaya başlamıştı. Önemi artan dijital 3-boyutlu modellerin ayrıntısı,

doğal olarak boyutları da artmaya başlamıştı. Boyutu artan 3-boyutlu modellerin

işlenmesi ve saklanması maliyeti artmıştı. Bu artan maliyet 3-boyutlu modelleri

sıkıştırma ihtiyacı doğurdu. İşlemci gücünün çok olmadığı, bellek sıkıntısı yaşanan

zamanlarda 3 boyutlu model sıkıştırma araştırmaları başlamıştır. Araştırmalar

derinlemesine yapılmaya, sıkıştırma işlemlerinde en küçük kazançlar dahi hesaba

katılmaya çalışılmıştır.

Yaklaşık on yıl süren 3 boyutlu modellerin sıkıştırılması konusu, teorik

noktaya ulaştığını iddia eden bir araştırmadan sonra daha fazla araştırmacı tarafından

yeterince ilgi toplayamamıştır. Gelişen teknoloji ve sınırların esnemesi ya da

kalkmasından dolayı sıkıştırmaya olan ihtiyaç önemini yitirmiştir. 3 boyutlu model

sıkıştırma konusundaki araştırmalar kademeli sıkıştırma konusuna doğru kaymıştır.

Kademeli sıkıştırma yeni çağın gereği haline gelmiştir. Aynı zamanda kademeli

sıkıştırma yöntemleri 3 boyutlu modelleri internet üzerinden gönderilebilmeye

uygun hale getirmiştir. En önemli özelliği olan 3 boyutlu modelleri kademeli bir

biçimde gösterebilmesi kademeli sıkıştırmayı araştırmacıların geliştirmelerini

yönelttiği alan haline getirmiştir. Kademeli sıkıştırma algoritmaları tekil 3 boyut

sıkıştırma algoritmalarına göre toplamda daha iyi sıkıştırma algoritmaları değildir.

Fakat internet çağında bant genişliği gibi yeni kısıtlarla karşılaşıldığında bu kısıtları

aşabilecek çözümler ortaya koymuştur.

 Araştırma konularının 3 boyutlu modelleri sıkıştırma konusunda kademeli

ya da 3 boyutlu model dizileri gibi yöntemlere kayması veri sıkıştırma alanındaki

önemli gelişmelerin tekil 3 boyutlu model sıkıştırma algoritmalarına değil de daha

çok yeni konuların üzerinde uygulanmasını sağlamıştır.

Bazı sıkıştırma algoritmaları sıkıştırmadan önce veriyi genel amaçlı

sıkıştırma yöntemleri ile etkili bir biçimde sıkıştırılabilecek hale getirmeye çalışır.

IV

Bu yüzden 3 boyutlu model sıkıştırma algoritmalarında genellikle son basamak

olarak dönüştürülmüş ya da özel bir şekilde sıkıştırılmış 3 boyutlu model verisi genel

amaçlı veri sıkıştırma yöntemleri ile tekrar sıkıştırılıp entropi olabildiğince

yükseltilmeye çalışılır.

Bu çalışmada literatürdeki tekil 3 boyutlu örgü sıkıştırma algoritmaları,

endüstri tarafından geliştirilip kullanılan kütüphaneler, açık ya da kapalı kaynak

kodlu yazılımlar, geliştirme araçları, zamanında popüler fakat güncel bir koduna ya

da çalışan uygulamasına ulaşılamayan algoritmalar toparlanmaya, derlenmeye

çalışılmıştır. Bu uygulamalar, sonrasında tekil 3 boyutlu örgü sıkıştırmasında

kullanılarak sıkıştırma performansları karşılaştırılmıştır.

Tekil 3 boyutlu örgü sıkıştırma algoritmalarının son basamağı olarak

kullanılabilen genel amaçlı veri sıkıştırma algoritmalarının karşılaştırmalı

değerlendirme deneylerine göre günümüz en iyi sıkıştırma istatistiklerine sahip

olanları öncesinde belirttiğimiz derlenen algoritmalar ile beraber kullanılarak

toplamda en iyi sıkıştırma elde edilmeye çalışılmış ayrıca genel amaçlı sıkıştırma

yöntemlerinden hangilerinin tekil 3 boyutlu örgü sıkıştırmaya en uygun yapıya sahip

olduğu tespit edilmeye çalışılmıştır.

V

ACKNOWLEDGMENT

I would like to express my endless thanks and appreciation to my supervisor,

Assoc. Prof. Dr. Mustafa ORAL, for all respectable knowledge, support, and

patience.

My greatest thanks are for my wife, Gülnur ELMAS, for her support and

love.

VI

CONTENTS PAGES

ABSTRACT ... I

ÖZ .. II

GENİŞLETİLMİŞ ÖZET ... III

ACKNOWLEDGMENT .. V

CONTENTS .. VI

LIST OF FIGURES ... VIII

LIST OF TABLES .. XII

1. INTRODUCTION .. 1

1.1. Problem Statement .. 2

1.2. Thesis Contribution .. 3

1.3. Thesis Layout .. 4

2. BACKGROUND AND BASIC CONCEPTS ... 5

2.1. Triangular Mesh .. 5

2.2. Manifold Mesh .. 6

2.3. The Euler-Poincaré formula .. 8

2.4. Connectivity and Geometry .. 9

2.5. Orientation .. 9

2.6. Compression Performance .. 10

3. DATA STRUCTURES OF MESH ... 11

3.1. Face Set ... 11

3.2. Indexed Face Set ... 12

3.3. Adjacency Matrix ... 13

3.4. Adjacency Lists .. 13

3.5. Winged-Edge .. 14

3.6. Half-Edge .. 15

3.7. Corner Table ... 16

3.8. Summary ... 18

VII

4. CLASSIFICATION .. 19

5. SINGLE RATE MESH COMPRESSION .. 23

5.1. Connectivity Compression .. 23

5.1.1. Triangle Strip .. 23

5.1.2. Spanning Tree ... 26

5.1.3. Triangle Traversal (Conquest) .. 31

5.1.4. Valence Encoding ... 35

5.2. Geometry Compression .. 40

5.2.1. Quantization ... 41

5.2.1.1. Scalar Quantization .. 41

5.2.1.2. Vector Quantization ... 42

5.2.2. Prediction .. 43

5.3. Entropy Coding ... 44

6. EXPERIMENTAL DESIGN .. 47

6.1. General-Purpose Data Compression Methods .. 51

6.2. Dataset .. 54

6.3. Design of Our Approaches ... 55

6.4. Collected Methods and Final Testbed .. 58

7. RESULTS AND DISCUSSIONS ... 59

7.1. 3D Mesh Compression Methods ... 59

7.2. General-Purpose Compressors .. 62

7.2.1. Geometry Information .. 62

7.2.2. Connectivity Information ... 63

7.3. Total Compression Results ... 64

8. CONCLUSION AND FUTURE WORK ... 67

REFERENCES ... 69

CURRICULUM VITAE ... 77

APPENDIX ... 78

VIII

LIST OF FIGURES PAGES

Figure 2.1 Polygonal 3D mesh elements respectively; vertices, edges, faces,

polygons, surfaces (Rchoetzlein 2009) ... 5

Figure 2.2 Non-manifold vertex (left). A non-manifold edge (middle), a

configuration of a non-manifold but can be handled by most of the data

structures (right). (Botsch et al. 2006) .. 6

Figure 2.3 Cube and sphere are homeomorphic to each other. (“Homeomorphic

surfaces” n.d.) ... 7

Figure 2.4 Meshes from left to right: Irregular, semiregular, and regular. (Alliez et

al. 2008) .. 7

Figure 2.5 Euler characteristic F – E + V = ꭓ ... 8

Figure 2.6 Orientable manifold (A). Non-orientable non-manifold (B). Orientable

non-manifold (C) meshes. (Peng et al. 2005) 9

Figure 3.1 Face Set - Independent Faces - Separate Triangles 12

Figure 3.2 Index Face Set – Indexed Structure – Shared Vertex 12

Figure 3.3 Adjacency Matrix data structure representation 13

Figure 3.4 Full Adjacency List data structure representation 13

Figure 3.5 Partial Adjacency List data structure representation 14

Figure 3.6 Winged-Edge data structure representation ... 15

Figure 3.7 Respectively: Winged-Edge, Optimized Winged-Edge, and Half-Edge15

Figure 3.8 Traversing the mesh with a corner table operators and example 16

Figure 4.1 Classification of algorithms according to (Maglo et al. 2015) 22

Figure 5.1 The triangle strip (Left), the triangle fan (Middle), and the generalized

triangle strip (Right). .. 24

Figure 5.2 Generalized Triangle Mesh (Deering 1995a) .. 25

Figure 5.3 Arrows indicating a set of boundary edges (A), triangle fans for the first

strip (B), triangle fans for the second strip (C), thick arrows used for

selected boundary edges, thin arrows used for the triangle fans

IX

associated with each inner boundary vertex. With courtesy of (Peng et

al. 2005) .. 26

Figure 5.4 Block diagram of a MPEG-4 3DMC encoder (Jovanova et al. 2008) ... 27

Figure 5.5 Two way for a spiral path (Taubin and Rossignac 1998) 28

Figure 5.6 Topological Surgery Representation. (Taubin and Rossignac 1998) 29

Figure 5.7 Illustration of The ‘Hand’ and ‘Glove’ vertex spanning trees traversing

the mesh. (Diaz-Gutierrez et al. 2005) ... 30

Figure 5.8 Solid lines: A triangular mesh. Dotted lines are its dual graph. (Li and

Kuo 1998) ... 31

Figure 5.9 Different cut-border operations. The gate is shown as an arrow and the

new triangle is shaded darkly. .. 32

Figure 5.10 The five configurations (symbols) of the EdgeBreaker algorithm. (Maglo

et al. 2015) .. 33

Figure 5.11 Angle-Analyzer set of symbols (Lee et al. 2002) 34

Figure 5.12 Example Run of the (Touma and Gotsman 1998) encoding algorithm37

Figure 5.13 Top line the original algorithm (Touma and Gotsman 1998), Bottom line

(Alliez and Desbrun 2001a) ... 38

Figure 5.14 Geometry-driven coding with free valences (left) will in practice yield a

lower symbol dispersion than coding with full valences (right)

(Kälberer et al. 2005) .. 39

Figure 5.15 The ten TFAN configurations (Mamou et al. 2009) 40

Figure 5.16 TG98 uniform quantization, Angle-Analyzer non-uniform quantization,

Adaptive Vertex Chasing 4 subdivision (Lee and Park 2005). 42

Figure 5.17 Simple (a), Dual (b), FreeLence Parallelogram Prediction (c) (Maglo et

al. 2015) .. 44

Figure 6.1 Connectivity or Geometry information benchmark scheme 53

Figure 6.2 Combined Best Compressor Method (CBCM) 56

Figure 6.3 Best Compressors Combined Method (BCCM) 57

Figure 6.4 Final Testbed of our design for the comparison test 58

X

Figure 7.1 Bit per vertex performance representation of selected general-purpose

compressors on geometry information only (lower is better) 62

Figure 7.2 Total ranking of each method for geometry information of all models . 62

Figure 7.3 Bit per vertex performance representation of selected general-purpose

compressors on EdgeBreaker connectivity information only 63

Figure 7.4 Total ranking of each method for connectivity information of all models

 .. 64

Figure 7.5 Total ranking of the total models with EdgeBreaker + CBCM method 64

Figure 7.6 Compression performances (bpv) of collected and proposed methods . 65

Figure 7.7 Total ranking of each collected methods for all models 65

XI

XII

LIST OF TABLES PAGES

Table 5.1 Translation between Cut-Border-Machine and EdgeBreaker symbols ... 33

Table 6.1 Selected 10 compressors listed based on compression algorithms 53

Table 6.2 Connectivity information samples from Body model 55

Table 7.1 Connectivity compression rates of prior algorithms categorically 59

Table 0.1 Compression Ratio (Uncompressed / Compressed) 86

Table 0.2 Storage cost in percentage .. 86

Table 0.3 Space savings in percentage .. 87

Table 0.4 Total bits per vertex (bpv) ... 87

Table 0.5 Geometry information only compression ratio 88

Table 0.6 Geometry information only storage cost in percentage 88

Table 0.7 Geometry information only space savings in percentage 89

Table 0.8 Geometry information only bit per vertex (bpv) 89

Table 0.9 EdgeBreaker CLERS only compression ratio ... 90

Table 0.10 EdgeBreaker CLERS only storage cost in percentage 90

Table 0.11 EdgeBreaker CLERS only space savings in percentage 91

Table 0.12 EdgeBreaker CLERS only bit per vertex (bpv) 91

Table 0.13 Alliez & Desbrun connectivity only compression ratio 92

Table 0.14 Alliez & Desbrun connectivity only storage cost in percentage 92

Table 0.15 Alliez & Desbrun connectivity only space savings in percentage 93

Table 0.16 Alliez & Desbrun connectivity only bit per vertex (bpv) 93

Table 0.17 Face Fixer connectivity only compression ratio 94

Table 0.18 Face Fixer connectivity only storage cost in percentage 94

Table 0.19 Face Fixer connectivity only space savings in percentage 95

Table 0.20 Face Fixer connectivity only bit per vertex (bpv) 95

XIII

1. INTRODUCTION Ammar Abbas ELMAS

1

1. INTRODUCTION

 The contribution of computer graphics to science and technology is always

groundbreaking. At the same time, computer graphics are one of the most exciting

areas of computer science that attracts researchers. Due to the high number of

researches, this field is growing rapidly, possibly more than any other aspect of

computer science.

 Computer graphics field is incorporation with various domains from

scientific applications, engineering, visualization, medical imaging to entertainment,

media, game industry etc. Visualization methods with the development of 3D

modeling technology have leaped forward. Apart from all these, there is a concept

of 3D models that can be considered relatively new in the field of computer graphics.

With the help of computer graphics and technological developments in 3D scanners,

3D models began to emerge and computerized visualization and industrial design

were opened to another dimension.

 Industry began to use 3D models very quickly and enthusiastically. If a

picture is worth a thousand words an interactive 3D model is worth a million then.

Industrial design, which has a steady place in production stages, has become heavily

dependent on 3D models and modeling programs. Since 3D modeling facilitated the

process during the production phase, it did not have any problems in providing funds

from companies for the development of the technology. Even so, quick answers were

produced by the academy and open source community to the needs and problems.

 Computer animation is also an important part of computer graphics. It has

attracted attention worldwide and has become one of the most successful

applications of digital media technology. It has revolutionized computer animation,

film world, TV and computer games industry. Many other fields such as marketing,

arts, and sciences etc. has been cooperating with computer animation which has

shown us the possibilities of creating more realistic and natural scenes,

1. INTRODUCTION Ammar Abbas ELMAS

2

comprehensive simulations of complex problems, and access to places that are

difficult or impossible to discover.

 3D animation simply gives life to static 3D objects, creating a sequence of

static meshes each of which represents one frame. Today, animation technology has

also become more sophisticated and accessible. Furthermore, its applications have

become more and more well-known and mostly require animated 3D models and

scenes with a high degree of realism. It is therefore inevitable to compress 3D

datasets.

 In this part of the problem, compression algorithms come into play. Limits

have always been a repressive element in developing new compression methods,

codecs. Within the limits, various codecs have been developed according to the

needs. There are a bunch of codecs for image compression which later also adapted

for video. So far, compression methods are considered successful in fulfilling the

needs.

1.1. Problem Statement

 As 3D models, animation or datasets becomes more realistic and more

complex, the corresponding 3D meshes’ demands getting bigger and bigger,

consuming more space which resulting more storage cost, consuming more CPU

instruction cycle even causing more cache misses, and most importantly demand

more bandwidth when using on the internet.

 At first scanning technology can process low-resolution models which are

relatively small compared with nowadays 3D models’ size. The development of 3D

scanning technologies did not take too long to respond. The resolutions of the 3D

models increased in detail and resolution, increasing the digital 3D model size as a

result.

 Lots of exciting ideas and new theoretical approaches have been found a way

of reducing the amount of storage for mesh models. Mpeg-4 and Java3D are some

of those ideas that become industry standard. There are different needs and different

1. INTRODUCTION Ammar Abbas ELMAS

3

solutions to these needs. The different requirements have led to different solutions

that vary between the effectiveness of representation and the accuracy of the details.

Approaches can be lossy or lossless, as well as can be progressive and single-rate.

Lossy storage is not preferred in some CAD systems, therefore lossless compression

methods are retaining their role in 3D compression world.

1.2. Thesis Contribution

 In this thesis, currently available 3D mesh compression algorithms,

frameworks, libraries etc. are investigated in order to display the advancements and

the current state of 3D compression algorithms. Especially, the algorithms that are

popular in survey papers but don’t have any implementation or had outdated

implementation or no published version is available, are gathered together and

compiled accordingly. Some algorithms which are mentioned in survey papers

(Taubin and Rossignac 1999, Alliez and Gotsman 2005, Peng et al. 2005, Maglo et

al. 2015), are not available to end-user or not even published at all. Reaching authors

for every method that is not publicly available could not be the case. Implementing

from their paper may resolve the problem but while coding original intentions might

not be maintained. Different implementations may reveal different programs which

may not be reliable for using comparison purposes. Some popular algorithms don’t

have a compiled version or outdated development environment requirement. This

thesis contributed to the field by compiling these algorithms from original source

with the updated requirements of new libraries and dependencies which result in

working binaries of pioneering 3D mesh compression algorithms. The updated

algorithms will be made publicly available to future researchers in the field.

 The thesis will also contribute to the field by supplying a comprehensive text

material that takes the future researchers to a voyage on the advancements on the

field as well as basic understanding of the topic.

 According to the benchmark results, current best general-purpose data

compression methods are identified and applied as the last stage of mesh

1. INTRODUCTION Ammar Abbas ELMAS

4

compression. Results are compared against each other in order to demonstrate the

current state of single-rate 3D mesh compression performance with the current best

general-purpose data compression methods.

1.3. Thesis Layout

 The layout of the thesis is organized as follows. Chapter 2 provides the

basics of 3D mesh concept to familiarize the reader with the terminology. Chapter 3

introduces current data structures for 3D meshes. Chapter 4 making an introduction

to the bounds of this thesis before reviewing compression methods in Chapter 5.

Experimental design of our approach and collected mesh compression

methods covered in chapter 6. Chapter 7 is the summary of chapter 5 and the results

of the work done throughout the thesis mentioned in chapter 6. Chapter 8 is the

conclusion chapter which also includes future work can be done to improve or extend

this thesis.

2. BACKGROUND AND BASIC CONCEPTS Ammar Abbas ELMAS

5

2. BACKGROUND AND BASIC CONCEPTS

 This chapter introduces the concept of a mesh. In order to understand the 3D

mesh and mesh compression methods, definitions and explanations are presented in

this chapter.

 Among numerous representation methods, an effective way to represent 3D

meshes is triangle meshes. Mesh representation can be either in 2D or 3D. However,

the real geometry that compression algorithms are dealing with will always be the

2D projection of a 3D model.

2.1. Triangular Mesh

 The most basic and simplified representation of the surface is triangular

mesh. Mesh representation is heavily handled by triangular meshes in computer

graphics related areas like computer-aided design and manufacturing (CAD, CAM).

Even polygons can be tessellated to form triangle meshes. Triangular meshes consist

of three basic entities: vertices, edges, and faces Figure 2.1. Vertices are points in

the 3D world. Vertices are connected by lines called Edges. Edges are formed a

closed area called Faces.

Figure 2.1 Polygonal 3D mesh elements respectively; vertices, edges, faces,

polygons, surfaces (Rchoetzlein 2009)

2. BACKGROUND AND BASIC CONCEPTS Ammar Abbas ELMAS

6

2.2. Manifold Mesh

 The edge has to be connected to only two faces in order to be manifold. If

an edge is connected to only one face, it’s called boundary edge. A mesh is manifold

if every edge in the mesh is either a boundary edge or a manifold edge. At the same

time, the faces incident to a vertex must form an open or a closed fan.

 Another important topological characteristic for a mesh is 2-manifold. If the

surface of a mesh is homeomorphic to a disk or a half-disk that mesh is 2-manifold.

Non-manifold vertices or edges disrupts the 2-manifold property of a triangle mesh.

 A non-manifold edge has more than two faces connected to itself. A non-

manifold vertex is the only connection between surfaces or fan of triangles Figure

2.2. Non-manifold meshes are tricky. Most of the algorithms couldn’t handle non-

manifold meshes cause there is no consistent connectivity information.

Figure 2.2 Non-manifold vertex (left). A non-manifold edge (middle), a

configuration of a non-manifold but can be handled by most of the data

structures (right). (Botsch et al. 2006)

A and B can be homeomorphic if A can be extended or bent to B without

tearing B. Generally speaking the homeomorphism is a stretching and bending of the

object into a new one. A square and a circle, a cube and a sphere are homeomorphic

to each other Figure 2.3, but a sphere and a torus are not homeomorphic to each

other.

There are interior and exterior edges. Interior edges are not at the border,

therefore, they are 2-manifold. Exterior or boundary edges are at the border so that

they only connected to one edge.

2. BACKGROUND AND BASIC CONCEPTS Ammar Abbas ELMAS

7

Figure 2.3 Cube and sphere are homeomorphic to each other. (“Homeomorphic

surfaces” n.d.)

 The simple mesh is a triangle mesh. Simple mesh shapes a manifold,

orientable, connected surface. A number of handles define the genus of an orientable

connected manifold without boundary. Simple mesh has no handle and either has no

boundary.

Regular triangular mesh has a valence of 6 for interior vertices and valence

4 for boundary vertices. Not regular meshes are called irregular or extraordinary.

Mesh topology can be irregular, semiregular, or regular Figure 2.5.

Figure 2.4 Meshes from left to right: Irregular, semiregular, and regular. (Alliez et

al. 2008)

2. BACKGROUND AND BASIC CONCEPTS Ammar Abbas ELMAS

8

2.3. The Euler-Poincaré formula

 The Euler formula states a relation between the number of vertices V, edges

E, faces F, genus g, connected component c (generally 1), and boundary edges b in

a closed connected mesh: F – E + V = 2(c – g) – b. Euler characteristic of a model

defined as the right-hand side of the Euler formula ꭓ = 2 - 2g. Closed 2-manifold

polygonal mesh has Euler characteristic of 2 where the genus is 0. Torus which has

genus value 1 has Euler characteristic of 0 Figure 2.4.

 Since in most real-world applications the genus and border are unimportant

compared to the number of elements, the righthand side of Euler formula can be

assumed as a trivial. Each face uses 3 edges and each edge is used by 2 faces.

Therefore, 2E ≈ 3F. The number of faces is doubled the number of vertices: F ≈ 2V.

The number of edges is tripled the number of vertices: E ≈ 3V. The average valence

for a vertex is 6. Sum of valences is twice the number of edges. These relations come

in handy when estimating the runtime complexity of mesh processing algorithms and

when analyzing file formats or data structures for triangle meshes.

Figure 2.5 Euler characteristic F – E + V = ꭓ

2. BACKGROUND AND BASIC CONCEPTS Ammar Abbas ELMAS

9

2.4. Connectivity and Geometry

 Mesh elements are vertices, edges, and faces. On its most basic form, meshes

are represented by geometry and their connectivity (also called topology or structure)

information.

 Relations of mesh elements are defined by pairs of the same type.

Connectivity information contains this relation (adjacency) information.

 Geometry describes point locations on 3D Cartesian space for each vertex

and may also describe normal vector values for each face.

2.5. Orientation

 The orientation of a face is clockwise or counterclockwise order of its

vertices. The orientations of two adjacent triangles are called compatible if they

execute opposite directions on their common edges. A mesh is orientable if all

orientations of its faces are compatible.

 For every edge, orientations of two faces that are connected with a common

edge have to be a different orientation in order that mesh to be orientable.

Figure 2.6 Orientable manifold (A). Non-orientable non-manifold (B). Orientable

non-manifold (C) meshes. (Peng et al. 2005)

If there is a case for orientations that pairs of triangles are compatible for all,

then that mesh is called manifold mesh.

2. BACKGROUND AND BASIC CONCEPTS Ammar Abbas ELMAS

10

 Orientation implicitly holds the inside-outside information of a mesh. This

information used for calculating normals. For some data structures traversing the

mesh is only possible by orientation information.

 Non-orientable mesh has normal calculation problems which result in no

inside or outside reliable information. Therefore, it makes difficult to navigate in the

mesh.

2.6. Compression Performance

 The general convention about compression performance is bit per vertex

(bpv). On the other hand, not all papers fulfill this convention and use bit per triangle

(bpt) and even use the total compression ratio (i.e. 1:17). In this thesis, popular

algorithms’ bpv information has been given. While comparing with the current best

algorithms, libraries, frameworks etc. bit per vertex convention have been used as

far as possible. However, in this thesis we have provided four output types for

comparison purposes: bit per vertex, space saving that method can provide in

percentage, storage cost after compression according to raw data in percentage and

finally the compression ratio.

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

11

3. DATA STRUCTURES OF MESH

 Mesh representation and implementation problems yield to different kind of

data structures that are listed below. Each of these data structures is a solution to

domain-specific problems like implementation easiness, compactness, efficient

traversal, etc. Most importantly data structures should offer an efficient way of

retrieving different kinds of adjacency information fast and without taking up much

storage space.

 Data structure should consider some design criteria to overcome above

domain specific problems. One of the main criteria is the storage cost. Data to be

stored must be carefully selected for storage efficiency. Some information can be

generated from each other. However, geometry information consists of 3D

coordinates of vertices and attribute information consist of normal, color, texture

coordinate of every vertex, face, edge need to be stored explicitly. On the other hand,

connectivity information can be stored in a various way that’s why it is the most

studied data by most of the data structures. Other criteria data structure should

support are rendering, geometry queries, modifications, and compression

availability.

 Data structures should support basic operations resourcefully. For a given

face it should find its vertices and neighboring faces. For a given vertex it should

find face touching it and neighboring vertices etc.

3.1. Face Set

 Also known as Independent Faces or Separate Triangles, Face Sets just store

a list of faces Figure 3.1. For each face, store positions of its vertices are stored.

There is no connectivity information but a collection of polygons. 3D print file

extension STL uses Face Set data structure. Face set structure does not need to store

all data in memory to render the mesh. However, redundancy is excessive.

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

12

Figure 3.1 Face Set - Independent Faces - Separate Triangles

3.2. Indexed Face Set

 Indexed face set also known as an indexed structure or shared vertex. A

triangular mesh can be represented with shared vertices that consist of a vertex

coordinate array and a face array. The face array registers face by indexing its

vertices in the coordinate array which registers the coordinate of all vertices Figure

3.2. Connectivity information encodes through face array. In this data structure, each

vertex is shared multiple times by all its incident triangles. The whole list of vertices

needs to be stored in the memory.

Figure 3.2 Index Face Set – Indexed Structure – Shared Vertex

 Indexed Face Set data structure is easy to implement and quite compact but

not efficient for traversal. Raw file formats (OBJ, PLY, OFF, WRL, etc.) are inspired

from indexed data structure while representing meshes.

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

13

3.3. Adjacency Matrix

 This data structure model stores the mesh connectivity information in the

adjacency matrix. If there is an edge between vi and vj then Aij = 1 Figure 3.3. New

features can be accessed thanks to adjacency matrix representation. For example:

(An)ij = Number of paths whose length is n from vi to vj.

 Adjacency Matrix can represent non-manifold meshes. On the other hand,

store no connection between a vertex and its adjacent faces.

Figure 3.3 Adjacency Matrix data structure representation

3.4. Adjacency Lists

Figure 3.4 Full Adjacency List data structure representation

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

14

Information is stored in Adjacency Lists which can be full of adjacency of

only required part depending on the developer.

Full adjacency list stores all vertex, edge, and face adjacency Figure 3.4

without considering redundancy or storage cost. Traversal is easy. Querying mesh is

effortless. However, modification of a mesh requires updating lots of data.

Partial adjacency list stores only part of the full adjacency list and derived

others from redundancy Figure 3.5. According to the data chosen to be stored some

combination only work on specific meshes.

Figure 3.5 Partial Adjacency List data structure representation

3.5. Winged-Edge

 Winged-Edge representation can also be named under the partial adjacency

list but winged-edge stores most of the information on edges and derives face and

vertex adjacency from edge adjacency. What is crucial about winged-edge

representation is every face and vertex adjacency table can only point to one edge.

Each edge is fixed size: 2 vertices, 2 faces, and 4 edges. Winged-Edge representation

has enough information to traverse. All topological relation can be retrieved in

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

15

optimal time. Being edge-centric rather than face-centric generalizes it to work with

polygonal meshes.

Figure 3.6 Winged-Edge data structure representation

3.6. Half-Edge

Figure 3.7 Respectively: Winged-Edge, Optimized Winged-Edge, and Half-Edge

Winged-Edge representation optimized to Half-Edge representation by using

2 half-edges instead of a single edge. So that an edge corresponds to a pair of half-

edges with opposite orientations Figure 3.7. Each half-edge stores half topological

information concerning the edge. Optimization applied to Winged-Edge data

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

16

structure by omitting faces if not needed and also by omitting one edge pointer on

each side which results in one-way traversal called Half-Edge data structure.

Half-Edge representation is edge-centric which enables generalizing it to

work with polygonal meshes. Efficient traversal and update operations provided.

3.7. Corner Table

 Corner table is yet another simple data structure which makes it easy to

process and store of manifold triangular meshes. Corner table data structure consists

of G table, V table, and O table Figure 3.8. Coordinates of vertex v stored in the G[v]

table, represented as v.g in (Rossignac 2005).

Figure 3.8 Traversing the mesh with a corner table operators and example

 Vertex-Triangle relation defines each triangle by integer references of three

which are its vertices. These references are kept as successive entries in the V table.

Although G and V are enough to identify the triangles and the triangle they represent,

accessing to a neighbor triangle or vertex can’t be established with the only G and

V. Problem resolved with O table, opposite corner representation. Accessing other

elements with corner table representation is straightforward like: Corner (c),

Triangle (c.t), Vertex (c.v), Next corner in c.t (c.n), Previous corner (c.p), Corner

opposite (c.o), right corner (c.r) and left corner (c.l).

All geometric queries result in O(1) time. Most operations are O(1) which

make corner table convenient for rendering operations and hardware

implementations. On the other hand, corner table only works with manifold

triangular meshes. Since corner table has high redundancy, many derived versions

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

17

developed by (Gurung and Rossignac 2010, Gurung et al. 2011a, 2011b, 2013, Luffel

et al. 2014).

Sorted Opposite Table (SOT) matches each vertex with a different triangle

and rearranges triangles so that triangle x of the first m triangles matches to vertex

x, where m is the number 12 of vertices. So, there is no need to store the incidence

V table, which can be recovered by swinging around each vertex till a triangle is

reached with a sufficiently small identifier. The v.c operator is also available

implicitly.

Sorted Quad (SQuad) extends SOT by pairing most unmatched triangles

with matched vertex-triangle combination to form matched quads. By forming

quads, SQuad avoids storing one opposite corner per triangle between triangles in

the same quad.

LR rearranges the vertices and matched incident quads of a mesh along a

ring which is a nearly Hamiltonian cycle. It links the two triangles incident on a

(directed) ring edge e with the vertex v at the source of the edge. LR then stores, for

each v, the (integer) references v.L and v.R to the tip vertices (those not on e) of the

two triangles that these vertices form with e. Given that most of the corners are in

the ring, this means storing a reference (32 bits) per triangle. In LR, many adjacency

relationships can be inferred from the ring.

Zipper extends LR and prevents storing most of the v.L and v.R references

directly. Instead, it stores a pair of 3-bit codes for most ring vertices. These codes

store delta increments between two v.L (v.R) consecutive entries from which v.L

(v.R) are derived in constant time.

Similarly, Grouper extends SQuad representation, Grouper shows the

geometry and connectivity of a mesh by storing two adjacent triangles and a common

vertex, grouping the corners and triangles in fixed size records. Unlike SQuad,

Grouper inserts the geometry data within connectivity data and uses a new

connectivity representation to show that corners and triangles can be stored in a

consistent order.

3. DATA STRUCTURES OF MESH Ammar Abbas ELMAS

18

3.8. Summary

 Implementing data structures for 3D mesh may look like an easy

programming job at first look, actually, it is much harder to balance between flexible,

memory-aware, and computation efficient data structure.

 Different data structures have been overviewed by the (Kettner 1999) and

by the (De Floriani and Hui 2003). There are other data structures, for further reading

specialized for a range of tasks and size of data. (Isenburg and Lindstrom 2005) has

processing massive meshes and (Cignoni et al. 2004) has a view-dependent

rendering of massive meshes. Data structures need to decide between low memory

usage or full access. For this decision kindly refer to the (Kallmann and Thalmann

2001, Castelli Aleardi et al. 2008).

4. CLASSIFICATION Ammar Abbas ELMAS

19

4. CLASSIFICATION

 3D mesh compression is always an essential field for the future of

multimedia compression. Remeshing, simplification, and compression: these are the

three main approaches to reduce the size of a 3D mesh. The purpose of the

compression approach is to have a coding bit stream as short as possible so that the

compressed file size becomes as small as possible.

 Compression is also valuable as an encoding tool for simplification and

remeshing approaches that result in a small mesh, which is often required to

efficiently encode large databases with many models. Particularly regular and large

models usually contain more information than required or redundant information.

While preserving the connectivity of the mesh, simplification should be performed.

 The widely accepted idea in network simplification is that the network is

simplified by a number of local processes that remove a small number of adjacent

mesh elements. Remeshing is also a promising approach in compression area. A

regular mesh is approximated to original mesh. Exploiting this regularity of

approximation ensures efficient storage of a mesh.

 3D models are generally polygonal meshes, in this thesis, the focus will be

mainly on compression techniques for 3D triangular meshes which is also a

polygonal mesh.

 Typically, connectivity, geometry and attribute data are enough to represent

and define a 3D mesh. Geometry data specify vertex locations in 3D space.

Connectivity data holds the neighborhood information between vertices. Attribute

data states other properties such as normal vectors, material information, and texture

coordinates etc. Therefore, according to which part of 3D triangular mesh data is

going to be compressed, 3D mesh compression methods have been grouped into

three categories, geometry compression, connectivity compression, and attributes

compression.

4. CLASSIFICATION Ammar Abbas ELMAS

20

 Most of the well-known compression algorithms’ (Taubin and Rossignac

1998, Touma and Gotsman 1998, Rossignac 1999, Alliez and Desbrun 2001a)

encoding phase are done separately. There also exist geometry driven connectivity-

oriented algorithms too(Lee et al. 2002). Early works focused on the connectivity

coding. However, geometry data takes up more bits than connectivity data, and

researchers are well aware of the situation and working on compression of geometry

data efficiently.

 Geometry compression is classified into two classes; lossless and lossy

geometry compression whether the reconstructed(decoded) data exactly the same as

the original or not. Completely restoring the original geometry data from the

compressed data can only be done by lossless compression methods. On the other

hand, lossy compression couldn’t restore original data. Generally, information is lost

in the quantization phase.

 3D mesh compression can be performed on spatial-domain or transform-

domain. Some networks require data compression to reduce the latency and then

select progressive representation to convert a 3D mesh into streams that can be easily

managed by networks.

 Decoding phase determines the classification of mesh compression methods.

If the decoding is started after the transmission, it classified as single-rate (single-

resolution mono-resolution) compression. If the decoding is started during the

transmission, it classified as progressive compression.

 Single-rate 3D mesh compression methods generally create single bitstream

which consists of connectivity information that describes the mesh topology and

geometry information.

 Bitstreams of progressive transmission have several components in it which

need to be separated. Typically, both bitstreams contain base mesh which later

refined by reading latter bits from the stream.

 Lossless coding done by single-rate methods aims to remove the redundancy

available in the original data. Progressive compression has to make a tough choice

4. CLASSIFICATION Ammar Abbas ELMAS

21

between the data size and accuracy. Accuracy can also be called rate-distortion trade-

off.

 Lossy coding of single-rate compression can be accomplished by modifying

the model, making it easy to handle by codes without degrading too much valuable

information.

 Early researches on 3D mesh compression mainly concentrated on single-

rate methods to reduce the bandwidth usage between the GPU and CPU. Single-rate

mesh compression algorithms treat geometry and connectivity data as a whole. In

single-rate compression, the rendering process cannot start until the entire

compressed data reaches to the decoder.

 The popularity of Internet force researcher to work on progressive

compression and transmission intensely. With the help of progressive compression,

the 3D mesh can be rebuilt continuously from a different level of details while the

bitstream is being received. From the development trends perspective, focus on 3D

mesh compression techniques are changed from connectivity-driven methods to

geometry-driven methods.

 Apart from the progressive compression schemes, there is also randomly

accessible mesh compression schemes under the static mesh title. Random access

algorithms are capable of decompressing only the requested part of the mesh to save

resources. This kind of algorithms specifically designed for a model that doesn’t fit

in device memory.

 Apart from the single-rate compression methods, there are progressive and

randomly accessible algorithms available for single-rate compression, but they are

generally not as effective as pure single-rate methods.

 This thesis will be limited with the specified algorithms of categories and

subcategories accordingly; static single rate heavily connectivity-driven, some

geometry-driven triangular 3D mesh compression algorithms Figure 4.1.

4. CLASSIFICATION Ammar Abbas ELMAS

22

Figure 4.1 Classification of algorithms according to (Maglo et al. 2015)

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

23

5. SINGLE RATE MESH COMPRESSION

 Multimedia data types, such as audio, image, and video, have common

features in which data structures are known by both the encoder and the decoder.

However, a mesh structure is generally not defined in advance. The mesh structure

is not completely known by the encoder prior to compression. Therefore, in addition

to having to encode the geometry, a mesh compression algorithm must also encode

the connectivity information.

5.1. Connectivity Compression

5.1.1. Triangle Strip

 Triangle strips are easy to handle and well supported by GPUs. The primary

purpose of the triangle strip is to reduce the bandwidth usage between central and

graphics processing units. The efficiency of the triangle strip method is better than

raw formats, like index face sets, but still not very efficient on the compression side.

In order to achieve better compression a popular method, generalization applied. Due

to its structure, triangular stripes always accept vertices in the same order. However,

generalized triangle strips do not always obey this order to create longer strips for

exploitation purposes which disrupt its structure.

 Generalized triangle strips are a mixture of triangle fans and strips. In an

indexed face set, a triangle is recorded by three vertices, in generalized triangle strips

triangle is added by only one vertex except for the first triangle.

 So, generalized triangle strips provide compressed representation than

indexed face sets, particularly if the strips are long. A number of triangles to the

vertices ratio is very close to 1 in long enough strips. Which means a triangle can be

represented by 1 vertex index accurately by generalized triangle strips.

 A mesh typically has twice as many triangles as vertices. Some vertices

indices information is repeated in the generalized triangle strip representation, which

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

24

states a redundancy in storage. To overcome this storage waste number of schemes

have been created which use a buffer to hold the indices of recently processed

vertices.

Figure 5.1 The triangle strip (Left), the triangle fan (Middle), and the generalized

triangle strip (Right).

 (Deering 1995a) first introduced the geometry compression schema to

compress the data sent between CPU and GPU by generalizing triangle strips and

fans. The new concept used by Deering, generalized triangular mesh Figure 5.1,

applied by combining vertex buffer with generalized triangle strips. An example of

geometry compression schema of Deering can be seen in Figure 5.2.

 The first stage of Deering’s method is to convert generalized triangle strip

data to generalized triangle mesh while using mesh buffer consisted of 16 slots queue

referenced by 4-bit index. Conversion explicitly pushes vertices onto mesh buffer

for reuse.

 After representing connectivity information with generalized triangle mesh

positions, normals and colors quantized to 16-bit as a second stage. According to the

Deering 16-bit per component is visually indistinguishable. In many cases, far fewer

bits are needed. Geometry is generally local within the 16-bit or less. In the

generalized mesh buffer, it is likely that the delta difference between one vertex and

the other is significantly less than 16 bits. Like positions, colors also quantized as

well but with less accurately to only 12-bit.

 Delta encoding applied to neighbors as a third stage to the quantized values.

As stated earlier most geometry is local and delta encoding these local values reduce

the representation size of quantized values. Depend on delta encoding Deering stated

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

25

that far fewer bits needed. At the last stage, Huffman based variable-length encoding

performed on deltas. All of these stages have specific instructions defined in

Deering’s original paper as Geometry Compression Instructions. In the end, there is

binary stream output with Huffman table initializations and geometry compression

instructions.

Figure 5.2 Generalized Triangle Mesh (Deering 1995a)

 Chow proposed an optimized geometry compression schema based on the

original work of Deering, generalized triangle mesh, but specifically optimized for

real-time rendering (Chow 1997). Deering’s original work didn’t show the

decomposition of mesh which is later proposed by Chow. Chow’s algorithm is

influenced by the spiraling traversal of the mesh as (Taubin and Rossignac 1998) in

the Topological Surgery compression algorithm. Chow’s method applied by

decomposing mesh according to Figure 5.3. At first, it finds boundaries. Later, it

finds fans around each vertex that is adjacent to two successive boundary edges.

These composed triangle fans create the first generalized triangle strip. Then this

strip marked as discovered. A new set of boundary edges is selected accordingly

separating discovered triangles from undiscovered ones. A new generalized triangle

strip is similarly formed from the new set of boundary edges again. Chow also use

vertex buffer method, so that the vertices in the previous generalized triangle strip

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

26

can be reused without wasting storage space. Mesh is traversed until triangles are all

processed.

Figure 5.3 Arrows indicating a set of boundary edges (A), triangle fans for the first

strip (B), triangle fans for the second strip (C), thick arrows used for

selected boundary edges, thin arrows used for the triangle fans associated

with each inner boundary vertex. With courtesy of (Peng et al. 2005)

 An alternative representation has come from (Bajaj et al. 1999) based on a

decomposition of the mesh into triangle and vertex layers used by (Taubin and

Rossignac 1998) originally in their Topological Surgery algorithm with a different

version. Vertex layers are non-crossing strings of vertices. Usually, they are

separated by one edge and take shape of a same-origin circle (concentric) on the

mesh. Between the vertex layers, there are the triangle layers which consist of

triangle strips and fans. Non-manifold meshes can be handled by this approach.

5.1.2. Spanning Tree

(Taubin and Rossignac 1998) introduces the Topological Surgery algorithm,

first introduced as a single-resolution manifold triangle mesh compression scheme.

Later extended its capabilities to handle arbitrary manifold polygonal meshes with

properties. VRML standard use Topological Surgery as a binary version of a VRML

(VRML Compressed Binary format) (Taubin et al. 1998). Topological Surgery has

become a part of the ISO/IEC multimedia standard with more efficient encoding by

Moving Picture Experts group, MPEG-4/3DMC. The 3DMC algorithm is a single

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

27

rate compression method for manifold triangular meshes. Block diagram of a 3DMC

encoder can be seen in Figure 5.4.

 VRML raw file format represents 3D mesh in ASCII. (Taubin et al. 1998)

created a compressed binary format for VRML based on Topological Surgery

scheme for efficient transmission. Compressed binary data stream consists of

encoded vertex graph, encoded simple polygons, encoded geometry and property

data which are quantized, predicted, and compressed. What makes Topological

Surgery so efficient in compression lies behind each of these elements encoding

process and order.

Figure 5.4 Block diagram of a MPEG-4 3DMC encoder (Jovanova et al. 2008)

MPEG-4 implementation of Topological Surgery partitioned connectivity

information into per-triangle and global information which is transmitted first.

Geometry and property data kept interleaved way in per-triangle information which

later transmitted correspondingly.

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

28

By using two spanning trees, connectivity of a planar graph able to encoded

with constant bit per vertex (Turán 1984). These spanning trees are vertex and

triangle spanning tree. To encode mesh connectivity Topological Surgery presented

based on this thought which is to make a planar polygon from a selected set of cut

edges. The connectivity then represented by the structures of a polygon and cut

edges. Set of cut edges need to be selected and any vertex tree in a simple mesh can

be selected. The coding cost for both vertex and triangle spanning trees are relational

with the number of runs. Vertex spanning tree construction defines the number of

runs which is build based on layered decomposition, a spiral path Figure 5.6, to

maximize the length of each run so that minimizing the number of runs generated.

Figure 5.5 Two way for a spiral path (Taubin and Rossignac 1998)

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

29

Figure 5.6 Topological Surgery Representation. (Taubin and Rossignac 1998)

Topological Surgery algorithm representation stated in Figure 5.5. The

vertex spanning tree (A, B) compiled of vertex runs. Cutting through the vertex tree

edges generates topological simply connected polygon (C, D). The bounding loop

(E) is the boundary of the polygon. The dual graph of the polygon is the triangle

spanning tree (F). Triangle runs end in leaf or branching triangles. Leaf triangles are

red, regular triangles are yellow, and branching triangles are blue. The triangle

spanning tree has a root triangle (G). Marching edges (H) connect consecutive

triangles within a triangle run. Each branching triangle has a corresponding Y-vertex.

Two consecutive branching triangles define a run of length one (I).

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

30

 (Diaz-Gutierrez et al. 2005) presented the Hand-and-Glove algorithm which

is a simple variant of a vertex spanning tree based on Topological Surgery algorithm.

The Hand-and-Glove algorithm encodes a manifold mesh with the help of two vertex

spanning trees: Hand and Glove trees which are built for traversing the entire mesh,

in order to form a triangle strip loop. Conceptually Glove trees wrap around the

Hand trees in defining the triangle strip. Both spanning trees can be represented by

any start node and a depth-first or breadth-first tree traversal. The traversal encoded

per node by two bits: one bit for child nodes, and one bit for siblings, if the node has

one or more. Every triangle is a member of either the Hand or The Glove tree. The

triangle strip is defined by a single start triangle and instructions. Advance to the

next following triangle instructions is consist of taking the next vertex either from

the Hand or the Glove vertex spanning tree.

Figure 5.7 Illustration of The ‘Hand’ and ‘Glove’ vertex spanning trees traversing

the mesh. (Diaz-Gutierrez et al. 2005)

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

31

 (Li and Kuo 1998) proposed a so-called “dual" approach that traverses the

edges of the dual graph (Figure 5.7) and outputs a variable length sequence of

symbols based on the type of a visited edge. The final sequence is then coded using

a context-based entropy coder.

Figure 5.8 Solid lines: A triangular mesh. Dotted lines are its dual graph. (Li and

Kuo 1998)

5.1.3. Triangle Traversal (Conquest)

 Algorithms that are proposed with a region-growing approach to encoding a

mesh by generating a triangle spanning tree, decomposed the meshes into strips.

Generation of this spanning trees forces the algorithm iteratively process the mesh

triangles with a breadth-first traversal. The simplicity of implementation and ease of

understanding are key advantage point for triangle traversal methods. Therefore,

triangle traversal methods became the center of researches on mesh compression.

There are two main methods: EdgeBreaker (Rossignac 1999) and The Cut-Border

Machine (Gumhold and Straßer 1998) each describe a set of growing operations for

triangular meshes.

 The Cut-Border Machine proposed as one of the first triangle conquest

approaches. (Gumhold and Straßer 1998) This approach starts from the initial

borderline, which divides the whole mesh into conquered and unconquered parts,

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

32

and inserts triangles one by one into the conquered parts. Insertion applied by using

one of the five (later six) operations: new vertex, connect forward, connect

backward, split, close, and later union Figure 5.9. Each operation represented by a

symbol: *, →, ←, ∞, ▽, and later ∪. These operations sequence is encoded later

using Huffman coding. The Cut-Border Machine can encode manifold meshes either

orientable or non-orientable. Its most desirable feature is that the decompression

speed is fast and the decompression method is easy to implement in hardware.

Compression and decompression can be in parallel as well. These features make the

Cut-Border Machine very attractive especially in real-time coding applications.

Figure 5.9 Different cut-border operations. The gate is shown as an arrow and the

new triangle is shaded darkly.

 Triangle conquest has another popular approach called EdgeBreaker

proposed by (Rossignac 1999). It is almost equivalent with the Cut-Border Machine.

EdgeBreaker algorithm, on the other hand, guarantees the cost of connectivity with

its predefined fixed format. Every triangle in the mesh represented by one symbol

there is at most five symbols and no other additional offset. Faces are iteratively

processed while encoding connectivity on EdgeBreaker.

 The triangle conquest is controlled by edge loops. Each loop defines a

boundary around the conquered region and contains a gate edge, called the active

gate. Initially, there is one edge loop for each connected component. This algorithm

focuses on one edge loop et every main iteration. The other edge loops are stored

and waiting in the stack to be processed. If the component has no boundary, one edge

split into two half-edges and considered as the edge loop.

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

33

Table 5.1 Translation between Cut-Border-Machine and EdgeBreaker symbols
Cut-Border-Machine EdgeBreaker

Name Symbol Name Symbol

New Vertex * Create C

Connect Forward → Right R

Connect Backward ← Left L

Split ∞ Split S

Close ▽ End E

Union ∪ Merge M

An active gate is the start point for conquering a triangle at each step. When

a triangle is conquered algorithm updates the current edge loop also update the active

gate to the next edge in the loop. For each conquered triangle, this algorithm outputs

a symbol. In the original EdgeBreaker algorithm there are at most five kinds of

possible symbols for the connectivity structure. In Fig. 5.10 v is the center vertex,

and X is the current triangle. The active gate is the lowermost edge in Figure 5.10.

The complete fan is configured as symbol C (Create). Configuration symbol of L

(Left) stands for active gate has missing triangles at the left. Like in L but another

way of it, configuration symbol of R (Right) stands for active gate has missing

triangles at the right. When the active gate doesn’t have any other triangles, it means

configuration symbol is E (End). If there are missing triangles rather than left and

right of the active gate, configuration symbol S (Split) is generated.

Figure 5.10 The five configurations (symbols) of the EdgeBreaker algorithm. (Maglo

et al. 2015)

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

34

 Basically, the compression is traversing the dual graph of mesh in depth-first

order. The current loop is split into two when the split (S) case is met. One of them

(left-part) is pushed into the stack. The other (right) is further traced. Later, every

loop in the stack is also traced and encoded.

 The EdgeBreaker method able to encode the connectivity of orientable

manifold meshes. These meshes may have multiple boundaries or have arbitrary

genus. The best part of EdgeBreaker is it guarantee a worst-case cost (upper bound)

for simple meshes. However, the original EdgeBreaker algorithm is incompatible

with streaming applications, because it needs a two-pass process for decompression.

A disadvantage of an EdgeBreaker is that it requires about the same bitrate for non-

regular and regular meshes.

 The decoding efficiency was also improved to overcome linear time and

space complexities in (King and Rossignac 1999, Rossignac and Szymczak 1999,

Isenburg and Snoeyink 2001) of EdgeBreaker algorithm.

 The Angle Analyzer is a geometry-driven mesh traversal single-rate

compression algorithm developed by (Lee et al. 2002). The EdgeBreaker algorithm’s

five descriptors and the traversal design for minimizing the entropy revisited in the

Angle-Analyzer algorithm. The connectivity encoding is also performed by a gate-

based approach with cooperation between geometry and connectivity, in order to

achieve an efficient mesh traversal driven by both criteria adaptively.

Figure 5.11 Angle-Analyzer set of symbols (Lee et al. 2002)

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

35

 In Figure 5.11 the red vertices are front ones, red gates are new gates to be

inserted into the gate list to continue to conquest. Create (C) symbol is generated, if

the front vertex has not been visited yet. In the ordered gate list, two new gates

replace the current gate, as in the original EdgeBreaker. If the front vertex has been

previously visited, the front vertex can be located by turning either clockwise (CW)

around V1 or counter-clockwise (CCW) around V0 when the front vertex has been

visited and a new gate will replace both the current gate and the next gate in the list.

When an active gate updated to mesh boundary, there is no front face and a symbol

skip (S) will be generated. When the decoder is not able to identify the location of a

previous front vertex, a symbol J will be generated followed by an offset.

 One of the strengths of this algorithm is its quadrilateral mesh processing

implementation. The algorithm is generalized to quadrilaterals so that the Angle-

Analyzer is not only able to handle triangle meshes but also quadrilateral meshes

with extended the triangle conquest approach.

 To minimize the entropy of the op-code sequence, the Angle-Analyzer

chooses next gate adaptively to dominate the splitting and the merging of edge loops.

5.1.4. Valence Encoding

 The number of triangles is doubled the number of vertices in the manifold

mesh. That means if an algorithm implements its connectivity compression on

triangle-based approach, it will have twice as much output as vertices-based

approaches. Therefore one symbol per vertex will lead to better connectivity

compression performance. Representing connectivity with one symbol per vertex

established with valence approach.

 Euler’s theorem pointed out that the average vertex valence is 6. In fact,

valence distribution is focused around 6 in most models. To exploit these statistics,

valence-based encoding algorithms are developed.

 The pioneering valence-driven approach has developed by (Touma and

Gotsman 1998). This approach (TG98) doesn’t have a new traversal method.

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

36

Traversal method and order is the same with EdgeBreaker. Even the behavior of

algorithm for configuration of symbol C and configuration of symbol S is the same

in TG98 algorithm. However, TG98 algorithm treat R, L and E symbols as in

EdgeBreaker differently. Instead of encoding L, R, and E, TG98 encode the valence

of inserted vertices which is generally around 6. When a configuration of S occurs

TG98 encode the offset for each S triangle. Concluding the last element of a triangle

fan, TG98 completed automatically with the missing L, R, or E triangle valence

information.

 The generated list of vertex valences is ready to be compressed by an entropy

coder effectively because valences are mostly close to each other difference is

relatively small. Special cases like splitting the current active loop or merging it with

another active loop. These cases are covered with special codes in the encoding

phase. In order to make 3D mesh model 2-manifold and closed topology a dummy

vertex is added and connected to all boundary vertices.

 An example run of TG98 encoding algorithm stated in Figure 5.12. The

active lists are marked by thick lines. Edges already traversed are dashed lines. (a)

Input mesh. (b) Dummy vertex added and connected to all boundary vertices. (c)

Pick initial triangle to start, mark focus vertex, and generate code words “add 6, add

7, add 4”. (d) Expand the active list and generate code word “add 4”. (e) “add 8”. (f)

“add 5”. (g) “add 5”. Focus vertex becomes full (all edges encoded). (h) Focus vertex

removed, and focus moved on along the active list. (i) “add 4”. (j) “add 5”. Now the

next free edge of the focus leads to a vertex already in the active list. (k) Active list

split into two. Generate code word “split 5” (5 is the offset), and smaller one pushed

on the stack. (l) Focus vertex removed, and focus moved on. (m) “add 4”. (n) “add

4”. Focus vertex is full so it is removed. (o) The dummy vertex is added “add dummy

6”. (p) First active list complete. The second active list popped from the stack. (q)

“add 4”. (r) Focus vertex removed, and focus moved on. (s) Focus vertex removed,

and focus moved on. (t) Second active list complete. The resulting code is “add 6,

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

37

add 7, add 4, add 4, add 8, add 5, add 5, add 4, add 5, add 5, add 4, add 4, add dummy

6, add 4”.

 TG98 is a powerful compression algorithm when combined with the context-

aware arithmetic encoder. However, this algorithm can only work with orientable

manifold meshes.

Figure 5.12 Example Run of the (Touma and Gotsman 1998) encoding algorithm

 (Alliez and Desbrun 2001b) observed that split operations and dummy

vertices are not too little to ignore as stated in TG98 algorithm. They propose to

replace the deterministic conquest by a heuristic method to which is proved to be

better at choosing the next focus vertex with the minimal number of free edges. Split

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

38

codes and even the range of split offsets are minimized by this replacement. It also

improves compression rates when objects have numerous boundaries. Valence-

driven connectivity encoding stated the first upper bounds in valence-based

approaches, confirming the correctness of a valence-driven algorithm. In addition,

they encoded the output symbols with the range encoder (Schindler 1998), an

effective adaptive arithmetic encoder.

Figure 5.13 Top line the original algorithm (Touma and Gotsman 1998), Bottom line

(Alliez and Desbrun 2001a)

 Comparison of traversal methods for both valence-driven connectivity and

TG98 in Figure 5.13: Above demonstration is based on TG98. (a) The next counter-

clockwise edge is conquered from the active pivot. A valence code 5 is output. (b)

code 5. (c) code 6. (d) the pivot, full, is removed from the list at no cost. The next

vertex in the active list is chosen as a pivot. (e) code 6. (f) code split with an offset

of 2. The code sequence is {5,5,6,6,split(2)}. Below demonstration is based on

valence-driven connectivity method. (g) the best pivot candidate is searched into the

active list. One unique vertex has only one free edge, it is thus chosen as a pivot. (h)

code 3. (i) the full pivot is removed. The best pivot candidate has 0 free edges. (j)

the full pivot is removed. The next best pivot candidate has 2 free edges. (k) code 6.

(l) code 6. The pivot is now full. The code sequence is {3,6,6}.

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

39

 (Alliez and Desbrun 2001a) they claimed to have demonstrated the

optimality of valence-based approaches. On the other hand, this algorithm can only

work with orientable manifold meshes as like TG98 algorithm.

 The FreeLence (name comes from the free valence) encoder implement a

different approach which is counting the number of unconquered edges adjacent to

the processed vertex, except for split cases (Kälberer et al. 2005). As in full-valence

coders, the number of symbols is closely related to the total number of vertices, so

that their code sequences and symbol dispersions can be seen as in Figure 5.14.

 Using free valences heavily dependent on traversal algorithm. It needs to be

combined with an appropriate traversal algorithm. Because of that, FreeLence

employs a geometry-driven traversal scheme to keep the active list as convex as

possible, like in the Angle Analyzer encoder (Lee et al. 2002).

Figure 5.14 Geometry-driven coding with free valences (left) will in practice yield a

lower symbol dispersion than coding with full valences (right) (Kälberer

et al. 2005)

 (Mamou et al. 2009) proposed a distinctive valence approach which has the

capability to encode non-manifold and non-oriented triangle meshes, called TFAN

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

40

(Triangle Fan-based compression). It partitions the mesh into a set of predefined

triangle fans. TFAN partitions a triangle mesh into a set of predefined triangle fans

as a preprocessor step. For each triangle fan, there needs to be configuration code

and degree of the fan. There are 10 predefined configurations Figure 5.15 that can

cover all connectivity information with the help of its degree, regardless of

orientation or being manifold.

Figure 5.15 The ten TFAN configurations (Mamou et al. 2009)

TFAN has been successfully implemented and be a part of MPEG4/3DGC

and Open3DGC (Mamou 2009) methods.

5.2. Geometry Compression

 3D geometry information of a mesh is an elephant in the compression room.

Most of the early work try to reduce the size of connectivity information and not

even try to compress geometry at all. That why geometry information occupies

considerably more storage space than connectivity information in almost all cases

because connectivity compression has been studied extensively.

 Usually, geometry compression steps are similar like quantizing the vertex

location first and then vertex position prediction. Accurate prediction outputs a small

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

41

prediction error. Storing this small prediction errors with the help of delta difference

make the file suitable for better compression with entropy encoders.

5.2.1. Quantization

Geometry data of vertex coordinates are often stored in precise 3 (x, y, z)

IEEE 32-bit floating point values and thus consume quite an important part of the

whole 3D data. Also, geometry compression is challenging because it deals with

floating point numbers rather than integers as in connectivity compression. The 8-

bit exponent of 32-bit IEEE floating-point numbers allows positioning of the known

universe: from billions of light years, down to the sub-atomic particles. That much

precision is not needed mostly. Reducing precision by applying quantization can

significantly lessen data size without perceivable quality loss. Some applications

accept some precision loss in order to achieve superior compression rates. (Oral and

Elmas 2017)

5.2.1.1. Scalar Quantization

Scalar quantization is transforming number representation of vertex from the

floating-point into an integer which is also called normalization. The bounding box

of the mesh partitioned into a grid in 3D. Bounds of the grid are found by the biggest

number can be codded with that quantization bits amount. Cell size can be either

uniform or non-uniform. Center of a cell represents each vertex that is within the

bound of that cell. Positions are generated from the 3 coordinates of the cell.

Well-known compression schemes use a uniform scalar quantization (Deering

1995a, Taubin and Rossignac 1998, Touma and Gotsman 1998, Rossignac 1999).

 Unlike connectivity, geometry is slightly altered after quantization.

Quantization is not a lossless application. It affects the results in an irreversible

manner. However, the amount of impact on compression size is non-trivial.

 Angels can also be used to represent geometry information. (Bajaj et al.

1999) and Angle-Analyzer (Lee et al. 2002) encode the geometry information with

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

42

three angles. The Angle-Analyzer store only one dihedral angle and two internal

angles as a geometry. There is also a quantization step too. Quantization not applied

to global coordinates but applied to local angels. Different quantization bits applied

to the different angles, in order to achieve better rate-distortion performance.

Figure 5.16 TG98 uniform quantization, Angle-Analyzer non-uniform quantization,

Adaptive Vertex Chasing 4 subdivision (Lee and Park 2005).

 (Lee and Park 2005) proposed locating the geometry coordinates within four

different ranges. The biggest range is relatively having few vertices than others. To

encode the coordinates within a range, the ranges are roughly subdivided depending

on their size Figure 5.16. The position of the vertex is encoded by the range type and

the sub-cell number.

5.2.1.2. Vector Quantization

Another alternative quantization method is Vector Quantization. Like scalar

quantization but the shape of a cell that scalar quantization has is cube or cuboid.

However, in vector quantization shape can be arbitrary that has grouped vertex

locations in it that divides the set of points to quantize into arbitrary-shaped groups.

Vector quantization has been proposed for geometry compression in (Lee

and Ko 2000, Chou and Meng 2002). Vector Quantization does not follow the usual

quantization-prediction-entropy coding approach. In contrast, the vector

quantization approach first predicts vertex positions and then compresses the three

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

43

components of each prediction residual together. Quantization cells are not cube

anymore. Their shape can better adjust to the component or model shape. Each group

has a single point to represent themselves. Codebook needs to be transmitted with

the model’s compressed data. Vector quantization has demonstrated (Lee and Ko

2000, Chou and Meng 2002, Bayazıt et al. 2007, Lu and Li 2008, Meng et al. 2010)

its ability to achieve better rate-distortion performance other techniques. However,

the determination of the cell shape is computationally hard.

5.2.2. Prediction

Quantization of vertex coordinates followed by a prediction of vertex

positions. Prediction is based on guessing the relation between adjacent vertices’

coordinates. The fundamental point of prediction methods is that it reduces the

amount of geometry data. If the quantization results occur within the small range that

means predictions are good and many of the coordinates of the corrective vectors

will be small integers. A variable length or entropy coding schemes replace the

frequently appearing integers with shorter codes. Thus, in highly skewed models on

the quantization phase, compression performance depends heavily on the precision

of the vertex estimates.

Several prediction schemes have been proposed. such as delta prediction

(Deering 1995a, Chow 1997) used delta prediction. (Taubin and Rossignac 1998)

used linear prediction. (Touma and Gotsman 1998) used parallelogram prediction.

(Bajaj et al. 1999) used second-order prediction. All these prediction schemes can

be treated as a special case of the linear prediction scheme.

The position of the next vertex is predicted to be the position of the previous

vertex. This method is called delta prediction (Deering 1995a, Chow 1997). The two

positions, the delta, is encoded. (Bajaj et al. 1999) use a second-order predictor. The

differences between following deltas encoded by the second-order predictor. The

linear prediction has been used on the Topological Surgery algorithm (Taubin and

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

44

Rossignac 1998) which uses linear prediction. Prediction is done by the linear

combination of the k previous vertices in the vertex spanning tree.

Figure 5.17 Simple (a), Dual (b), FreeLence Parallelogram Prediction (c) (Maglo et

al. 2015)

Parallelogram prediction has been introduced by (Touma and Gotsman

1998), a founding idea that has spawned numerous descendants, besides their

ground-breaking valence-driven connectivity encoding. The compression algorithm

starts with a new vertex and with a triangle from an edge. A new vertex has been

predicted and the position of that prediction creates a parallelogram with two edges

and one vertex. Figure 5.17(a). The average position created from two

parallelograms stated the dual parallelogram prediction. Figure 5.17(b). 75% of

cases are appropriate to use dual parallelogram prediction. (Sim et al. 2003). It

provides slight improvements over parallelogram prediction. Combination of three

parallelogram prediction has been used by The FreeLence coder (Kälberer et al.

2005). Two of them is standard parallelogram prediction, the third one is from the

joining of two outer virtual edges. Figure 5.17(c).

5.3. Entropy Coding

 Data compression is mainly based on two approaches in the modern era. One

of them is Huffman Coding, the other is Arithmetic Coding. Arithmetic coding can

also be named as Range coding. Unlike Arithmetic coding Huffman coding is much

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

45

faster. Arithmetic coding can easily approach theoretical compression limit which is

defined as Shannon entropy, but arithmetic coding is a computationally heavy

algorithm.

 Asymmetric numeral systems (ANS) and Asymmetric binary systems (ABS)

by (Duda 2013) is a fairly new approach to entropy coding, which allows ending this

tradeoff between speed and rate. ANS is approximately 50% faster decoding than

Huffman coding. The compression rate of ANS is almost similar to arithmetic coding

even sometimes better than arithmetic coding.

 Various algorithms were discussed in this thesis. These algorithms often use

Huffman and Arithmetic coding methods. To be precise (Deering 1995a, Chow

1997, Bajaj et al. 1998, Gumhold and Straßer 1998, Taubin and Rossignac 1998,

Touma and Gotsman 1998) use Huffman coding in their methods either in

connectivity or geometry compression part. (Isenburg and Snoeyink 2000, Alliez and

Desbrun 2001b, Lee et al. 2002, Diaz-Gutierrez et al. 2005, Kälberer et al. 2005,

Lewiner et al. 2006, Mamou et al. 2009, Buelow et al. 2017) use various

arithmetic/range coding methods: order-0 to order-3, and Range Encoder (Schindler

1998) which is an adaptive arithmetic encoder. Only (Ponchio and Dellepiane 2015)

use Tunstall coding. Unlike Huffman coding and other variable-length schemes,

Tunstall coding (Tunstall 1967) use a fixed number of bits from a variable number

of symbols. In the decompression phase, the input blocks consist of a fixed number

of bits and the output is a variable number of symbols, Tunstall code performance

on compression almost equal with Huffman, especially where the bit size of the input

block is small. The EdgeBreaker algorithm didn’t use any entropy coder. Their

results do not depend on entropy or arithmetic coding schemes. Therefore,

EdgeBreaker is proper for compressing every kind of models. Especially attractive

for compressing large datasets which include lots of small models.

5. SINGLE RATE MESH COMPRESSION Ammar Abbas ELMAS

46

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

47

6. EXPERIMENTAL DESIGN

 This chapter covers the work we have done throughout the implementations

and comparisons as well as obstacles that we have encountered and resolved.

 Some algorithms which are mentioned in chapter 5 or in survey papers

(Taubin and Rossignac 1999, Alliez and Gotsman 2005, Peng et al. 2005, Maglo et

al. 2015), are not available to end-user or not even published at all. Reaching authors

for every method that is not publicly available is not the case. Implementing from

their paper may resolve the problem but while coding original intentions might not

be maintained. Different implementations may reveal different programs which are

not reliable for using comparison purposes. Some popular algorithms don’t have a

compiled version or outdated development environment requirement.

 At first prior 3D mesh compression methods intended to compare with each

other. We have started with Deering’s Geometry Compression algorithm which is

acquired by Java3D. However, Java3D is no longer supported from Java community

but still publicly available through various links. (Deering 1995b) A demo

implementation was found. The algorithm could not be compiled with the current

Java versions. Java3D was last updated with Java 1.5. With this information, we have

created a development environment with Java 1.5 and Java3D for compiling the

existing demo implementation. Deering's demo software was compiled and run

successfully which gives a single binary output file.

 EdgeBreaker is an easily found publicly available algorithm on the Internet.

Rossignac shared the first version of EdgeBreaker with the public. However, version

shared by Rossignac uses a special data structure called Corner Table. In order to

use the EdgeBreaker, it is necessary to convert the raw model data (OBJ or OFF) to

the Corner Table data structure (OV Table). Part of an online implementation of

EdgeBreaker does have a converter for OFF file to OV file called OFF2OV. We have

implemented that library and create the OV table of each model. The EdgeBreaker

can then compress the connectivity of 3D models with this OV Table accordingly.

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

48

After the compression, there is connectivity information (CLERS) and reordered

geometry information in separate files. There also exists a modified version of

EdgeBreaker on the Internet. Google Draco is also using EdgeBreaker as a base

method for one of their compression levels. (Brettle and Galligan 2017)

EdgeBreaker’s versions have been tried but full control over quantization couldn’t

be established. That’s why the original version is used in this thesis.

 The valence-driven connectivity encoding method of (Alliez and Desbrun

2001a) published as a closed source application which is part of 3D Toolbox of

Pierre Alliez (Alliez and Desbrun 2001b). 3D Toolbox can compress 3D mesh files

with the valence-driven connectivity encoding method. However, it only compresses

connectivity and outputs text and a binary version of connectivity information.

Geometry information can be compressed with 3D Toolbox which can only output

binary version but the used method is not defined or named well. (Touma and

Gotsman 1998) was one of the pioneering algorithms but source code or

implementation is not publicly available. Valence-driven connectivity encoding

algorithm has improved the original TG98 algorithm, which is not needed. Valence-

driven connectivity encoding algorithm has a strong geometry compressor in its

published paper but we don’t have a chance to use it because 3D Toolbox doesn’t

define its methods clearly.

 Although polygonal mesh compression is not a topic of this thesis, (Isenburg

and Snoeyink 2000) developed a Face Fixer method to apply 3D mesh compression

directly to polygons. Later (Isenburg 2000) has specialized this Face Fixer to

triangles and published Triangle Fixer method but didn’t release any implementation

other than Face Fixer. This method creates Face Fixer labels as connectivity

information. Connectivity information extracted with Face Fixer was also

compressed with selected general-purpose algorithms. Since our dataset only

contains triangulated models, Face Fixer which is developed specifically for

polygons, shouldn’t be compared with other triangle compression methods. For

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

49

information purpose only, in the results chapter, we have also shown the

performance of Face Fixer connectivity coder too.

 (Mamou 2009) developed and published the TFAN algorithm with

Open3DGC as its implementation with support from AMD (rest3D). Published

demo implementation was easy to compile and run. The Open3DGC algorithm treats

the file as a whole and compresses the connectivity and geometry information

together. The result is a single binary file.

 (Chun 2011) developed and released a WebGL-Loader for a Google project

called Google Body. Although this project has been shelved by Google, it has been

included in the thesis because it has been cited by other articles and included in the

comparisons. Finding correct branch of WebGL-Loader was not easy. There are

people who try to continue this project by themselves and there is the outdated

original version. POSIX implementation of algorithm compiled by the help of

emulators.

 An extension to the Cut-Border Machine which compresses both the

connectivity and attributes without loss has been implemented and released named

as Harry (Buelow et al. 2017).

 Implementation of Polygon Mesh Compressor on the web, which is not

working anymore due to browsers intentional lack of Java support, and also a

standalone Java version has been released by (Isenburg et al. 2002). This benchmark

software covers (Touma and Gotsman 1998, Alliez and Desbrun 2001a, Isenburg

2002, Isenburg and Alliez 2002, Khodakovsky et al. 2002) methods. Therefore, lots

of methods interleaved with each other. We can’t use this implementation.

 In 2008, ISO/IEC 14496-25 standard for 3D Model Compression was

adopted by the (MPEG) Moving Picture Experts Group, referred to as MPEG-4 Part

25, 3D Graphics Compression Model. (Jovanova et al. 2008) Implementation of this

Part 25 and also Part 16 software of MPEG-4 Standard have been released by (Preda

2008). However, there is only one reference software which covers lots of standards

and couldn’t compile successfully. Group patented the MPEG-4, therefore there

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

50

isn’t any publicly available implementation of MPEG-4. One of the sub-algorithms

of MPEG-4 is Topological Surgery which developed and released in the IBM

research center but IBM has changed its structure and this project is also not

available anymore even the internet archive doesn’t have the binaries.

 Apart from the above methods, dealt with the hassle of compilation or even

finding, there are applications, frameworks, or opensource programs which can be

easily compiled or downloaded too: OpenSceneGraph (Osfield 2001), Extensible 3D

format, OpenCTM (Geelnard 2009), Draco (Brettle and Galligan 2017), and Corto

(Ponchio 2015).

 Open source project OpenCTM is a file format and at the same time a

software library and a compression toolset of 3D meshes which has three types of

codecs: RAW, MG1(lossless), MG2. (Geelnard 2009) OpenCTM is a lossless

format. OpenCTM have different compression methods for different needs. MG1

and MG2 are lossless compression methods which utilize triangle reordering and

apply LZMA to compress the connectivity information. MG1 and MG2 differentiate

at the floating-point storage method. MG1 store original vertex data as floating-point

on the other hand MG2 store fixed place values. Heavily compression comes from

the lossless prediction technique. LZMA coder can handle small data very well so

the prediction technique of MG2 tries to minimize value range of the vertex

coordinates and also attributes too.

 Corto is a library for compression and decompression of meshes and point-

clouds. The main focus of Corto is decompression speed, while still providing good

compression rates. (Ponchio 2015)

 Draco is an open-source library for compressing and decompressing 3D

mesh data, developed by Google Chrome Media team (Brettle and Galligan 2017)

which has different compression levels. One of the methods Draco has implemented

is EdgeBreaker with rANS.

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

51

6.1. General-Purpose Data Compression Methods

 TurboBench (Bouzidi 2013) software includes almost all popular, latest or

fastest compressors in one compiled software package. All of the raw models and

(Rossignac 1999, Isenburg and Snoeyink 2000, Alliez and Desbrun 2001a)

connectivity, and geometry data have been benchmarked with TurboBench software

(Oct 7, 2018) and below ten best compressors according to the results have been

chosen to be compared.

 Bcm (Muravyov 2008) is a high-performance file compressor that utilizes

advanced context modeling techniques to achieve a very high compression ratio.

 Zpaq (Mahoney 2009) is a free and open source incremental, journaling

compressor. The compression algorithm uses an optional bitwise context mixing

model, followed by arithmetic decoding, packing into bytes, and an optional post-

processing transform.

 Bzip2 (Seward 1996) is a free and open-source file compression program

that uses the Burrows-Wheeler algorithm. The program is more effective than

Deflate and LZW programs. The LZW or .z and the Deflate algorithms such as .gz

and .zip are less effective but they operate quickly. As a result, they end up taking

more space than what bzip2 can achieve. Bzip2 relies on Burrows-Wheeler

transform or algorithm to convert all character sequences recurring frequently into

identical letters strings. The program then uses the Huffman coding move to front

transform. bzip, which was the predecessor of bzip2, employed arithmetic coding

but the successor uses Huffman coding. The performance of bzip2 is asymmetric. It

has a relatively fast decompression.

 Lzlib (Diaz 2009) is a data compression library providing in-memory

LZMA compression and decompression functions, including integrity checking of

the decompressed data. The high compression of LZMA comes from combining two

basic, well-proven compression ideas: sliding dictionaries (LZ77/78) and Markov

Models (the thing used by every compression algorithm that uses a range encoder or

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

52

similar order-0 entropy coder as its last stage) with segregation of contexts according

to what the bits are used for.

 Lzma (Lempel-Ziv Markov Algorithm) LZMA is a compression format

invented by Igor Pavlov, which combines an LZ77 compression and range encoding.

LZMA uses a dictionary compression algorithm (a variant of LZ77 with huge

dictionary sizes and special support for repeatedly used match distances), whose

output is then encoded with a range encoder, using a complex model to make a

probability prediction of each bit.

 Zstd or Zstandard (Collet 2015), is a fast lossless compression algorithm,

targeting real-time compression scenarios at zlib-level and better compression ratios.

It's backed by a very fast entropy stage, provided by Huffman coding and Finite State

Entropy (Collet 2013) library.

 Balz (Muravyov 2016) uses LZ77 with arithmetic coding, a 512K buffer

with optimal parsing (Storer and Szymanski 1982)

 Brotli is a generic-purpose lossless compression algorithm by (Google

2015) that compresses data using a combination of a modern variant of the LZ77

algorithm, Huffman coding, and 2nd order context modeling, with a compression

ratio comparable to the best currently available general-purpose compression

methods. It is similar in speed with deflate but offers more dense compression.

 Lzham (Geldreich 2009) is short for LZMA-Huffman-Arithmetic-Markov.

It is based on LZMA (7zip) but instead of using arithmetic coding throughout, it uses

them only for binary decisions and uses Huffman or Polar codes for literal and match

codes. A Polar code is similar to a Huffman code but is simpler to calculate at a cost

of 0.1% in compression.

 Libdeflate is a library for fast, whole-buffer DEFLATE-based compression

and decompression. libdeflate is heavily optimized. It is significantly faster than the

zlib library, both for compression and decompression and especially on x86

processors. In addition, libdeflate provides optional high compression modes that

provide a better compression ratio than the zlib's "level 9".

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

53

Table 6.1 Selected 10 compressors listed based on compression algorithms

Based on Compression Algorithm Compressors Extra Applied Methods

Burrows-Wheelers Transform bcm Order-0 Context Modeling

 bzip2

Reduced Offset Lempel-Ziv balz 1 Arithmetic Coding

Lempel-Ziv-Markov-Algorithm lzlib 9

 lzma 9

 lzham 4

Lempel-Ziv-77 zpaq 5 Heavy Context Modeling

 brotli 11 Order-2 Context Modeling

 zstd 22 Finite State Entropy

 libdeflate 12

 A new configuration for TurboBench software has been created for above

10 general-purpose compressors. Connectivity and geometry information separately

benchmarked with this new configuration.

Figure 6.1 Connectivity or Geometry information benchmark scheme

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

54

6.2. Dataset

Our dataset has been created with the models collected from public domain.

We have tried to use similar models from other datasets (Turk and Levoy 1996, Turk

and Mullins 2000, Desbrun 2004). Our dataset consists of 20 folders for each model.

Each folder consists of 25 different files representing the result of 17 different

encoding methods with their binary version if available.

All models are selected among the oriented manifold meshes. Models were

selected accordingly to test the limits of the methods. For example, there is the Statue

model which contains 1 million vertices and there is Geosphere model which

contains only 162 vertices to test with a high and low number of vertices.

There exists model which has holes or boundaries. Our collected methods

can handle boundaries and holes.

One connected component applied Euler formula has been studied by

researchers generally. Therefore, all of the models consist of only one connected

component, for example, the implemented original EdgeBreaker method can only

process one connected component.

Some models, especially Happy Buddha, include duplicated vertices.

According to the data gathered from TriMeshInfo, some models have self-

intersection. A different number of genus options are available generally 0 but

throughout the dataset, genus can be from 0 to 104.

Model images were taken with the help of MeshLab software (Cignoni et al.

2008). General mesh info extracted with TriMeshInfo software (Cignoni et al. 2005).

Since connectivity information implicitly stored, raw file formats can be a

different size. Therefore, the base file format can be OBJ, OFF, OSG, PLY etc. In

our study, we have selected the OBJ file format as a base file format to show the

compression performances of collected methods.

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

55

6.3. Design of Our Approaches

 As stated earlier some algorithms process connectivity and geometry

separately which make it possible to look for a better general compression algorithm

for only connectivity information or only geometry information. In this thesis,

EdgeBreaker CLERS connectivity data, Face Fixer labels data, and the valence-

driven connectivity encoding data have been gathered for all models. Geometry

information has been gathered from original EdgeBreaker algorithm Vertices text

output, which was just sorted geometry information.

 Beginning of some sample connectivity information of Body model given at

Table 6.2 in order to visualize the data.

Table 6.2 Connectivity information samples from Body model

EdgeBreaker Valence-Driven Con. Face Fixer

CCCRCRCCCRCCRCC

CRCCRCCCRCRCCCC

RRLCCRCRRCRCCCC

RCRCRRCCCCR…….

65677675974855565955

86566657546858676575

67676568675757646676

665686865565657…….

F3F3F3F3F3F3RF3F3R

F3F3F3F3F3F3RF3F3F

3F3RF3F3F3F3RH24RF

3F3RF3F3RF3F3………

 Now we have two connectivity and one geometry file to test general-purpose

data compressors compression performance against other 3D mesh compression

methods. We have tried two approaches to creating a complete model. In this thesis,

we have used the total model term which is a complete model with a general-purpose

compressor(s) applied.

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

56

Figure 6.2 Combined Best Compressor Method (CBCM)

 Our first approach is combining results of connectivity and geometry data

before choosing the best compressor Figure 6.2. We have named this approach as

Combined Best Compressor Method (CBCM). CBCM is appropriate for those who

don’t want to use more than one general-purpose compressor. In the end, CBCM

decides for a single compressor which is easy to use for a complete model.

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

57

Figure 6.3 Best Compressors Combined Method (BCCM)

 Our second approach is choosing the best compressor for connectivity and

geometry separately before combining their results to a single file Figure 6.3. We

have named this approach as Best Compressors Combined Method (BCCM). BCCM

is appropriate for those who need better compression. It may use one compressor

according to model but experimental results show that generally, it uses two

compressors because geometry and connectivity data has often different better

compressors.

6. EXPERIMENTAL DESIGN Ammar Abbas ELMAS

58

6.4. Collected Methods and Final Testbed

 All the collected methods have been analyzed for comparison purposes.

Some of the methods are forcing the user to quantize the mesh, some of the methods

are calculating normal information and adding into the data without asking. In order

to ensure the standard between methods, elimination has been done among them.

Finally, there are only 10 methods left to compare against each other in a reliable

way. Two of them, (Rossignac 1999, Alliez and Desbrun 2001a) which are allowing

interruption at the last stage, have been combined with our two approaches (CBCM

and BCCM) at the general-purpose compression stage.

 We have designed a testbed for our experimental design Figure 6.4 which

accepts input as OBJ or OFF raw format. After applying each of 3D mesh

compression method to each of 20 uncompressed model data, performance results

are represented with four different way: bit per vertex, space saving that method can

provide in percentage, storage cost after compression according to raw data in

percentage too and finally the compression ratio.

Figure 6.4 Final Testbed of our design for the comparison test

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

59

7. RESULTS AND DISCUSSIONS

 There are three types of results in this chapter. One of them is a performance

result of methods in chapter 4.1. The second one is general-purpose compressors’

performance on 3D model data. The third one is a comparison of collected 3D mesh

compression methods while applying current best general-purpose compressors also

with our two approaches.

 Benchmark results are supported with the ranking algorithm in order to

generalize the compression method among models.

7.1. 3D Mesh Compression Methods

 A complete summary of chapter 4.1 with categorically sorted and storage

cost given experimentally or by reference is given at Table 7.1.

Table 7.1 Connectivity compression rates of prior algorithms categorically
Category Algorithm Storage Cost

Generalized Triangle Strip (Deering 1995a) 1:4 - 1: 10 / 8-11 bpv

 (Chow 1997) 1:30 - 1:37

Spanning Tree (Taubin and Rossignac 1998) 2.48 - 7 bpv

 (Diaz-Gutierrez et al. 2005) 2* bpt

 (Li and Kuo 1998) 1,5 bpt

Layered Decomp. (Bajaj et al. 1999) 1.4 - 6.08 bpv

Valence-Driven (Touma and Gotsman 1998) 0.2 - 2.4 bpv

 (Alliez and Desbrun 2001a) 0.024 - 2.96 /3.24* bpv

 (Isenburg and Snoeyink 2000) 1.67 - 2.92 bpv

 (Kälberer et al. 2005) 0.03 - 2.11 bpv

 (Mamou et al. 2009) 0.2 - 2.7 bpv

Triangle Conquest (Gumhold and Straßer 1998) 3.22 - 8.94 bpv

 (Gumhold 1999) 0.3 - 2.7 bpv

 (Rossignac 1999) 1.8 - 2.4 / 4* bpv

 (King and Rossignac 1999) 3.67* bpv

 (Gumhold 2000) 3.52* bpv

 (Szymczak et al. 2001) 1.622* bpv

 (Lee et al. 2002) 1.5 / 4* bpv

*Theoretical upper bounds for connectivity given according to their articles.

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

60

Although geometry compression of (Deering 1995a)method is a lossy

method it is one of the first work in 3D mesh compression. Deering didn’t state a bit

per vertex performance values rather gave a compression rate of 1:4 to 1:10. Later

other researchers have demonstrated its application and acquired 8 to 11 bpv

performance values. Geometry Compression of Deering specifically developed for

hardware implementations. Its main purpose is reducing the memory usage between

CPU and GPU. However, Deering didn’t state any decomposition in its original

paper. Later (Chow 1997) implemented the generalized triangle mesh’s

decomposition and inspired by the Topological Surgery algorithm. Performance

value of Chow’s paper is also showing a compression rate of 1:30 to 1:37. We

couldn’t find any implementation or experimental results about bpv value.

Topological Surgery algorithm implemented with the help of IBM Research

center. However, it is not accessible anymore and already a part of some patents

especially in MPEG-4 part 25 (Jovanova et al. 2008). Thanks to two spanning trees

Topological Surgery encodes a triangular mesh with about 2.48 to 7 bpv. Hand-and-

Glove algorithm (Diaz-Gutierrez et al. 2005) again using two types of spanning trees,

encodes genus-0 triangle mesh with 4 bpv guaranteed cost. The trees are encoded

with 2 bpv, and one additional bit per triangle allows reconstruction of the triangle

strip. (Li and Kuo 1998) encodes connectivity of the triangle mesh with its dual

graph. Experimental results from other papers have reported that connectivity

compression rates are average of 1.5 bits per triangle not vertex.

 (Bajaj et al. 1999) have proposed an alternative representation based on

layered decomposition. Mesh connectivity compression performance has been

reported around 1.5 to 6 bpv. This method can process nonmanifold meshes too.

 The pioneering algorithm of valence-driven approach has been proposed by

(Touma and Gotsman 1998). The connectivity is encoded by the valence of the

inserted vertices, at around six generally. An entropy coder can efficiently compress

these valence values with the performance of 2.4 bpv. A regular mesh can be encoded

with almost 0 bpv theoretically. (Alliez and Desbrun 2001a) later proposed some

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

61

modifications on Touma and Gotsman method to further reduce the compression

rates. Valence-based approaches have been claimed as the optimum method by

Alliez & Desbrun. The Freelence coder (Kälberer et al. 2005) has a slightly different

approach that encodes the number of unconquered edges adjacent to the processed

vertex. TFAN (Mamou et al. 2009) has been proposed as an extended valence

approach which can compress nonmanifold and non-oriented meshes. Predefined 10

fan configurations have been looked for within mesh data, than its configuration

number and valence encoded accordingly. Performance values are stated as 0.2 to

2.7 bpv for connectivity only.

 Triangle traversal methods have started with two similar algorithms:

EdgeBreaker (Rossignac 1999) and Cut-Border-Machine (Gumhold and Straßer

1998) without knowing each other. Both methods follow the traversing approach of

extending the border formed by an initial triangle by iteratively traversing adjacent

triangles. Cut-Border-Machine can compress manifold triangles with 4 bpv

approximately. Experimental results have been stated from other papers from 3.22

to 8.94 bpv. This method doesn’t have a tight upper bound because of the offset it

encodes. On the other hand, EdgeBreaker guarantees a performance rate of 4 bpv.

Experimental results have been stated from 1.8 to 2.4 bpv. Some later improvements

guaranteed the worst-case scenario to 3.67 bpv first and then 3.55 bpv (Gumhold

1999, 2000, King and Rossignac 1999). With high regularity, even better results

occurred like 1.622 bpv (Szymczak et al. 2001).

 Angle Analyzer (Lee et al. 2002) encodes the connectivity by a gate-based

approach with cooperation between geometry and connectivity, in order to achieve

an efficient mesh traversal driven by both criteria adaptively. Angle Analyzer can be

classified as geometry-driven encoding methods because of the heavily dependent

on traversal algorithm. Performance of this method is around 1.5 bpv on average.

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

62

7.2. General-Purpose Compressors

As stated in Figure 6.1 general-purpose compressors have been tested on

geometry and connectivity separately. Moreover, results are given separately too.

7.2.1. Geometry Information

Figure 7.1 Bit per vertex performance representation of selected general-purpose

compressors on geometry information only (lower is better)

Figure 7.2 Total ranking of each method for geometry information of all models

Most of the 3D mesh compression algorithms use some prediction and

quantization methods. In our work, we do not apply quantization since working with

lossless methods. Applying general-purpose compressors directly was a bit risky.

However, the results are far better than expected. Total rankings are given in Figure

7.1 which shows that zpaq is the best compressor for geometry information without

Geometry bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Total Rank 106 189 69 145 136 119 33 164 82 57

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

63

quantization followed by brotli. Worst performance values as a bpv have come out

from the balz. The average bpv values are 44.6 for zpaq, 52 for brotli and 70 for

balz.

7.2.2. Connectivity Information

Most of the 3D mesh compression methods are heavily connectivity-based

compressors. Connectivity is not stored in explicitly, therefore, a transform or

compression needed before applying general-purpose compressors on connectivity

information. We have selected the output of connectivity encoder EdgeBreaker,

Alliez & Desbrun, and Face Fixer. Figure 7.3 is the graph of the result of

EdgeBreaker connectivity tested with general-purpose compressors. All results are

available in the Appendix.

Figure 7.3 Bit per vertex performance representation of selected general-purpose

compressors on EdgeBreaker connectivity information only

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

64

Figure 7.4 Total ranking of each method for connectivity information of all models

Total rankings are given in Figure 7.4. According to experimental results,

bcm is the best general-purpose compressor for connectivity data after 3D mesh

compression methods. The second-best compressor is bzip2. This time zpaq is the

third among ten compressors. Worst performance values as a bpv has come out from

the lzham. The average bpv values are 2.48 for bcm, 2.99 for bzip2, 3.60 for lzham.

Nefertiti and Geosphere model somehow broke the zpaq heavy context modeling

and results are not even close the worst algorithm. Moreover, those two models have

been excluded while visualizing the graph of the result in Figure 7.3.

Figure 7.5 Total ranking of the total models with EdgeBreaker + CBCM method

 The total rankings are also calculated for total models which are connectivity

and geometry combined models. Ranking results show that zpaq is ahead of others

like in geometry compression. However, this time the second best compressor is

Google’s brotli algorithm way better than bcm which is best connectivity

compressor.

7.3. Total Compression Results

EdgeBreaker and Alliez & Desbrun data compressed with our CBCM and

BCCM approach added to 8 other methods selected available 3D mesh compression

methods. As BCCM name stands for best compressors combined method its

EdgeBreaker bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Total Rank 194 131,5 152,5 108 88 110,5 110 81,5 31 93

Alliez Desbrun bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Total Rank 187,5 118 154,5 93,5 111,5 96,5 82 107 45,5 104

FF labels bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Total Rank 199,5 135 150 127 57,5 75,5 118,5 120 32 85

Total Model bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Total Rank 110 182 70 147,5 134,5 120 33 164 81 58

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

65

compression rates are equal or better than CBCM approach. Therefore Figure 7.5

only includes BCCM method for EdgeBreaker and Alliez & Desbrun.

Figure 7.6 Compression performances (bpv) of collected and proposed methods

Figure 7.7 Total ranking of each collected methods for all models

Total rankings are given in Figure 7.6. Average ranking method is used. As

a result, Alliez & Desbrun with our BCCM approach has the 4th best performance

rate among all. If we extracted the Corto and Harry which are variant of progressive

mesh compression methods but can be used as a single-rate mesh compressor, Alliez

& Desbrun with our BCCM approach has the 2nd best performance rate. Worst

performance value as a bpv has come out from the WebGL-Loader followed by

Deering.

The average performance (bpv) values are 31.01 for Harry (CBM), 45.42 for

Alliez & Desbrun, and 105.01 for WebGL-Loader.

Deering
Harry

(CBM)

TFAN

Open3DGC

OpenCTM

MG1

OpenCTM

MG2
Corto

Webgl-

Loader

Google

Draco

47,5 147 110 179 141 225 202 51 136 190 36,5 95

EdgeBreaker

w/ BCCM and w/ CBCM

Alliez & Desbrun

w/ BCCM and w/ CBCM

7. RESULTS AND DISCUSSIONS Ammar Abbas ELMAS

66

8. CONCLUSION AND FUTURE WORK Ammar Abbas ELMAS

67

8. CONCLUSION AND FUTURE WORK

General-purpose data compression has come a long way. Current active

compression developments groundbreakingly continue. Developments are supported

by technology giants and even actively used by them. 3D mesh compression, on the

other hand, evolved towards the needs of technology from single-rate mesh

compression to progressive and even sequence mesh compression methods.

However, single-rate mesh compression, the starting point and main compression

branch of 3D mesh, not updated with data compression’s groundbreaking ideas.

The easiest way to combine groundbreaking ideas with currently available

mesh compression method is to last stage of 3D mesh compression which is general-

purpose data compression. This thesis shows that, applying current best general-

purpose data compressors to transformed or compressed data of 3D mesh, succeeded

in combining groundbreaking ideas with mesh compression methods.

This thesis has been limited with only single-rate triangular mesh

compression methods and selected ten general-purpose compressors. Other than

triangular there are polygonal mesh compression methods too. Other 3D mesh

compression methods generally apply quantization and then use various prediction

method to store only prediction errors. In this thesis geometry information left alone

without any quantization or prediction at all. Not quantization but prediction

methods can be applied before testing the general-purpose compressors since data

type is important for the compressors results may change enormously in a better or

worse way. It needs to be tested.

8. CONCLUSION AND FUTURE WORK Ammar Abbas ELMAS

68

69

REFERENCES

Alliez, P., and M. Desbrun. 2001a. Valence-Driven Connectivity Encoding for 3D

Meshes. Computer Graphics Forum 20:480–489.

Alliez, P., and M. Desbrun. 2001b. Valence-Driven Connectivity Encoding for 3D

Meshes. http://www.geometry.caltech.edu/SingleRateEncoder/.

Alliez, P., and C. Gotsman. 2005. Recent Advances in Compression of 3D Meshes.

Advances in Multiresolution for Geometric Modelling:3–26.

Alliez, P., G. Ucelli, C. Gotsman, and M. Attene. 2008. Recent advances in

remeshing of surfaces. Page Mathematics and Visualization.

Bajaj, C. L., V. Pascucci, and G. Zhuang. 1998. Compression and coding of large

cad models.

Bajaj, C. L., V. Pascucci, G. Zhuang, and P. Work. 1999. Single Resolution

Compression of Arbitrary Triangular Meshes. Computational Geometry:

Theory and Applications:1–10.

Bayazıt, U., O. Orcay, U. Konur, and F. S. Gurgen. 2007. Predictive Vector

Quantization of 3-D Polygonal Mesh Geometry. Design:1–4.

Botsch, M., M. Pauly, C. Rossl, S. Bischoff, and L. Kobbelt. 2006. Geometric

Modeling Based on Triangle Meshes. Page ACM SIGGRAPH 2006 Courses.

ACM, New York, NY, USA.

Bouzidi, H. 2013. TurboBench. https://github.com/powturbo/TurboBench.

Brettle, J., and F. Galligan. 2017. Draco – opensource.google.com.

https://opensource.google.com/projects/draco.

Buelow, M. Von, S. Guthe, and M. Goesele. 2017. Compression of Non-Manifold

Polygonal Meshes Revisited. Page Eurographics Proceedings.

Castelli Aleardi, L., O. Devillers, and G. Schaeffer. 2008. Succinct representations

of planar maps. Theoretical Computer Science 408:174–187.

Chou, P. H., and T. H. Meng. 2002. Vertex data compression through vector

quantization. IEEE Transactions on Visualization and Computer Graphics

8:373–382.

70

Chow, M. M. 1997. Optimized geometry compression for real-time rendering.

Visualization ’97., Proceedings:347–354.

Chun, W. 2011. webgl-loader. https://code.google.com/archive/p/webgl-loader/.

Cignoni, P. . C., F. . Ganovelli, E. . D. Gobbetti, E. . Martopn, F. . Ponchio, and R. .

Scopigno. 2004. Adaptive TetraPuzzles: Efficient out-of-core construction and

visualization of gigantic multiresolution polygonal models. ACM Trans.

Graph.

Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.

2008. MeshLab: an Open-Source Mesh Processing Tool. Page in V. Scarano,

R. De Chiara, and U. Erra, editors. Eurographics Italian Chapter Conference.

The Eurographics Association.

Cignoni, P., F. Ganovelli, and F. Ponchio. 2005. Visualization and Computer

Graphics Lib. https://sourceforge.net/projects/vcg/.

Collet, Y. 2013. Finite State Entropy library.

https://github.com/Cyan4973/FiniteStateEntropy.

Collet, Y. 2015. Zstandard, zstd. http://www.zstd.net.

Deering, M. 1995a. Geometry compression. Proceedings of the 22nd annual

conference on …:13–20.

Deering, M. 1995b. 3D Geometry Compression.

https://docs.oracle.com/cd/E17802_01/j2se/javase/technologies/desktop/java3

d/forDevelopers/j3dguide/AppendixCompress.doc.html.

Desbrun, M. 2004. The Applied Geometry Lab at Caltech.

http://www.geometry.caltech.edu/.

Diaz-Gutierrez, P., M. Gopi, and R. Pajarola. 2005. Hierarchyless Simplification,

Stripification and Compression of Triangulated Two-Manifolds. Computer 24.

Diaz, A. D. 2009. Lzlib. https://www.nongnu.org/lzip/lzlib.html.

Duda, J. 2013. Asymmetric numeral systems: entropy coding combining speed of

Huffman coding with compression rate of arithmetic coding. arXiv preprint

arXiv:1311.2540.

71

De Floriani, L., and A. Hui. 2003. A Scalable Data Structure for Three-dimensional

Non-manifold Objects. Pages 72–82 Proceedings of the 2003

Eurographics/ACM SIGGRAPH Symposium on Geometry Processing.

Eurographics Association, Aire-la-Ville, Switzerland, Switzerland.

Geelnard, M. 2009. OpenCTM - Compression of 3D triangle meshes.

http://openctm.sourceforge.net/.

Geldreich, R. 2009. Lzham. https://github.com/richgel999/lzham_codec.

Google. 2015. Brotli. https://github.com/google/brotli.

Gumhold, S. 1999. Improved Cut-Border Machine for Triangle Mesh Compression.

Report.

Gumhold, S. 2000. New Bounds on The Encoding of Planar Triangulations.

Gumhold, S., and W. Straßer. 1998. Real Time Compression of Triangle Mesh

Connectivity. SIGGRAPH 98 Proceedings of the 25th annual conference on

Computer graphics and interactive techniques 32:133–140.

Gurung, T., D. Laney, P. Lindstrom, and J. Rossignac. 2011a. SQuad: Compact

representation for triangle meshes. Computer Graphics Forum 30:355–364.

Gurung, T., M. Luffel, P. Lindstrom, and J. Rossignac. 2011b. LR: Compact

Connectivity Representation for Triangle Meshes. ACM SIGGRAPH 2011

papers on - SIGGRAPH ’11 1:1.

Gurung, T., M. Luffel, P. Lindstrom, and J. Rossignac. 2013. Zipper: A compact

connectivity data structure for triangle meshes. CAD Computer Aided Design

45:262–269.

Gurung, T., and J. Rossignac. 2010. SOT: Compact representation for triangle and

tetrahedral meshes. Georgia Institute of Technology GT-IC-10-01:1–10.

Homeomorphic surfaces. (n.d.). . https://www.open.edu/openlearn/science-maths-

technology/mathematics-statistics/surfaces/content-section-2.4#.

Isenburg, M. 2000. Triangle Fixer: Edge-based connectivity compression. In 16th

EuropeanWorkshop on Comp.Geom. 2:18–23.

Isenburg, M. 2002. Compressing polygon mesh connectivity with degree duality

72

prediction. Graphics Interface:161–170.

Isenburg, M., and P. Alliez. 2002. Compressing polygon mesh geometry with

parallelogram prediction. IEEE Visualization, 2002. VIS 2002.:141–146.

Isenburg, M., P. Alliez, and J. Snoeyink. 2002. Benchmark Coding for Polygon

Mesh Compression and Triangle Mesh Compression.

http://www.cs.unc.edu/~isenburg/pmc/.

Isenburg, M., and P. Lindstrom. 2005. Streaming meshes. Proceedings of the IEEE

Visualization Conference:30.

Isenburg, M., and J. Snoeyink. 2000. Face Fixer : Compressing Polygon Meshes with

Properties. Proceedings of the 27th annual conference on Computer graphics

and interactive techniques:263–270.

Isenburg, M., and J. Snoeyink. 2001. Spirale Reversi: Reverse decoding of the

Edgebreaker encoding. Computational Geometry: Theory and Applications

20:39–52.

Jovanova, B., M. Preda, and F. Preteux. 2008. MPEG-4 part 25: A generic model for

3D graphics compression. 2008 3DTV-Conference: The True Vision - Capture,

Transmission and Display of 3D Video, 3DTV-CON 2008 Proceedings:101–

104.

Kälberer, F., K. Polthier, U. Reitebuch, and M. Wardetzky. 2005. FreeLence -

Coding with free valences. Computer Graphics Forum 24:469–478.

Kallmann, M., and D. Thalmann. 2001. Star-Vertices: A Compact Representation

for Planar Meshes with Adjacency Information. Journal of Graphics Tools 6:7–

18.

Kettner, L. 1999. Using generic programming for designing a data structure for

polyhedral surfaces. Computational Geometry: Theory and Applications

13:65–90.

Khodakovsky, A., P. Alliez, M. Desbrun, and P. Schröder. 2002. Near-optimal

connectivity encoding of 2-manifold polygon meshes. Graphical Models

64:147–168.

73

King, D., and J. Rossignac. 1999. Guaranteed 3.67 v bit encoding of planar triangle

graphs. Canadian Conference on Computational Geometry:95–98.

Lee, E. S., and H. S. Ko. 2000. Vertex data compression for triangular meshes.

Proceedings - Pacific Conference on Computer Graphics and Applications

2000–Janua:225–234.

Lee, H., P. Alliez, and M. Desbrun. 2002. Angle-Analyzer: A triangle-quad mesh

codec. Computer Graphics Forum 21:383–392.

Lee, H., and S. Park. 2005. Adaptive Vertex Chasing for the Lossless Geometry

Coding of 3D Meshes. Advances in Multimedia Information Processing - PCM

2005 3767:108–119.

Lewiner, T., M. Craizer, H. Lopes, S. Pesco, L. Velho, and E. Medeiros. 2006.

GEncode: Geometry-driven compression for General Meshes. Computer

Graphics Forum 25:685–695.

Li, J., and C. J. Kuo. 1998. A Dual Graph Approach to 3D Triangular Mesh

Compression:1–4.

Lu, Z. M., and Z. Li. 2008. Dynamically restricted codebook-based vector

quantisation scheme for mesh geometry compression. Signal, Image and Video

Processing 2:251–260.

Luffel, M., T. Gurung, P. Lindstrom, and J. Rossignac. 2014. Grouper: A compact,

streamable triangle mesh data structure. IEEE Transactions on Visualization

and Computer Graphics 20:84–98.

Maglo, A., G. Lavoué, F. Dupont, and C. Hudelot. 2015. 3D Mesh Compression:

Survey, Comparisons, and Emerging Trends. ACM Computing Surveys.

Mahoney, M. 2009. ZPAQ Incremental Journaling Backup Utility and Archiver.

http://mattmahoney.net/dc/zpaq.html.

Mamou, K. 2009. Open 3D Graphics Compression.

https://github.com/KhronosGroup/glTF/wiki/Open-3D-Graphics-

Compression.

Mamou, K., T. Zaharia, and F. Prêteux. 2009. TFAN: A low complexity 3D mesh

74

compression algorithm. Page Computer Animation and Virtual Worlds.

Meng, S., A. Wang, and S. Li. 2010. Compression of 3D triangle meshes based on

predictive vector quantization. ISSCAA2010 - 3rd International Symposium

on Systems and Control in Aeronautics and Astronautics:1403–1406.

Muravyov, I. 2008. BCM. https://github.com/encode84/bcm.

Muravyov, I. 2016. Balz. https://sourceforge.net/projects/balz/.

Oral, M., and A. A. Elmas. 2017. A Brief History of 3D Mesh Compression. Pages

136–140 2nd International Mediterranean Science and Engineering Congress

(IMSEC 2017).

Osfield, R. 2001. OpenSceneGraph. http://www.openscenegraph.org/.

Peng, J., C. S. Kim, and C. C. J. Kuo. 2005. Technologies for 3D mesh compression:

A survey. Journal of Visual Communication and Image Representation

16:688–733.

Ponchio, F. 2015. Corto. http://vcg.isti.cnr.it/corto/index.html#overview.

Ponchio, F., and M. Dellepiane. 2015. Fast decompression for web-based view-

dependent 3D rendering. Proceedings of the 20th International Conference on

3D Web Technology - Web3D ’15:199–207.

Preda, M. 2008. Graphics Codec - MPEG-4.

http://www.mymultimediaworld.com/software/opensource/gc/.

Rchoetzlein. 2009. Elements of polygonal mesh modeling.

https://en.wikipedia.org/wiki/Polygon_mesh#/media/File:Mesh_overview.svg

.

Rossignac, J. 1999. Edgebreaker: Connectivity compression for triangle meshes.

IEEE Transactions on Visualization and Computer Graphics 5:47–61.

Rossignac, J. 2005. 3D mesh compression. Visualization Handbook:359–379.

Rossignac, J., and A. Szymczak. 1999. Wrap & Zip decompression of the

connectivity of triangle meshes compressed with Edgebreaker 14:119–135.

Schindler, M. 1998. A fast renormalisation for arithmetic coding. Page 572

Proceedings DCC ’98 Data Compression Conference (Cat. No.98TB100225).

75

Seward, J. 1996. Bzip2. http://www.bzip.org/.

Sim, J. Y., C. S. Kim, and S. U. Lee. 2003. An efficient 3D mesh compression

technique based on triangle fan structure. Signal Processing: Image

Communication 18:17–32.

Storer, J. A., and T. G. Szymanski. 1982. Data compression via textual substitution.

J. ACM 29:928–951.

Szymczak, A., D. King, and J. Rossignac. 2001. An Edgebreaker-based efficient

compression scheme for regular meshes. Computational Geometry: Theory and

Applications 20:53–68.

Taubin, G., W. P. Horn, F. Lazarus, and J. Rossignac. 1998. Geometry coding and

VRML. Proceedings of the IEEE 86:1228–1243.

Taubin, G., and J. Rossignac. 1998. Geometric compression through topological

surgery. ACM Transactions on Graphics 17:84–115.

Taubin, G., and J. Rossignac. 1999. 3D geometry compression. Course Notes 21:18–

24.

Touma, C., and C. Gotsman. 1998. Triangle mesh compression. Graphics Interface.

Tunstall, B. P. 1967. Synthesis of noiseless compression codes. Georgia Institute of

Technology.

Turán, G. 1984. On the succinct representation of graphs. Discrete Applied

Mathematics 8:289–294.

Turk, G., and M. Levoy. 1996. The Stanford 3D Scanning Repository.

http://graphics.stanford.edu/data/3Dscanrep/.

Turk, G., and B. Mullins. 2000. Large Geometric Models Archive.

https://www.cc.gatech.edu/projects/large_models/.

76

77

CURRICULUM VITAE

 Ammar Abbas ELMAS was born in Konya, in 1990. He completed the

elementary school education at İzmir, Turkey. He graduated to the Maltepe Military

High School in 2008 and joined the Turkish Military Academy. He left the Turkish

Military Academy in 2009. He graduated from the Department of Computer

Engineering, KTO Karatay University, Konya, in 2014. He started working as an

R&D Engineer and then joined the academy at Çukurova University in 2016 as a

Research Assistant.

78

APPENDIX

79

Mesh info: Angel

Vertices: 237018

Faces: 474048

Manifold: YES

Edges: 711072

Degenerated faces: 6

Holes: 0

Border edges: 0

Connected components: 1

Genus: 4

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: 3

Mesh info: Armadillo

Vertices: 172974

Faces: 345944

Manifold: YES

Edges: 518916

Holes: 0

Border edges: 0

Connected components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Mesh info: Body

Vertices: 711

Faces: 1396

Manifold: YES

Edges: 2082

Holes: 0

Border edges: 24

Connected components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: NO

80

 Mesh info: Bunny

Vertices: 1494

Faces: 2915

Manifold: YES

Edges: 4333

Holes: 0

Border edges: 79

Connected components: 1

Genus: 2

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: YES

Mesh info: Cow

Vertices: 2904

Faces: 5804

Manifold: YES

Edges: 8706

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: 1

Self-Intersection: YES

 Mesh info: Dinosaur

Vertices: 14070

Faces: 28136

Manifold: YES

Edges: 42204

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: 4

Self-Intersection: YES

81

Mesh info: Eight

Vertices: 766

Faces: 1536

Manifold: YES

Edges: 2304

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 2

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: NO

Mesh info: Fandisk

Vertices: 6475

Faces: 12946

Manifold: YES

Edges: 19419

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: YES

Mesh info: Feline

Vertices: 49864

Faces: 99732

Manifold: YES

Edges: 149598

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 2

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: YES

82

Mesh info: Foot

Vertices: 10016

Faces: 20028

Manifold: YES

Edges: 30042

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: NO

 Mesh info: Geosphere

Vertices: 162

Faces: 320

Manifold: YES

Edges: 480

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh:

SEMIREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: NO

Mesh info: Hand

Vertices: 327323

Faces: 654666

Manifold: YES

Edges: 981999

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 6

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

83

Mesh info: Happy

Vertices: 543652

Faces: 1087716

Manifold: YES

Edges: 1631574

Degenerated faces: 2080

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 104

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: 1040

Mesh info: Head

Vertices: 11703

Faces: 23402

Manifold: YES

Edges: 35103

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: YES

Mesh info: Horse

Vertices: 19851

Faces: 39698

Manifold: YES

Edges: 59547

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: YES

84

Mesh info: Nefertiti

Vertices: 299

Faces: 562

Manifold: YES

Edges: 826

Holes: 0

Border edges: 34

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: NO

Mesh info: Statue

Vertices: 1009118

Faces: 2018232

Manifold: YES

Edges: 3027348

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

 Mesh info: Sculpt

Vertices: 21469

Faces: 42934

Manifold: YES

Edges: 64401

Degenerated faces: 1310

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: 655

Self-Intersection: YES

85

Mesh info: Torus

Vertices: 36450

Faces: 72900

Manifold: YES

Edges: 109350

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 1

Type of Mesh: REGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: NO

Mesh info: Venus

Vertices: 8268

Faces: 16532

Manifold: YES

Edges: 24798

Holes: 0

Border edges: 0

Connected Components: 1

Genus: 0

Type of Mesh: IRREGULAR

Orientable Mesh: YES

Oriented Mesh: YES

Duplicated vertices: NO

Self-Intersection: YES

86

Table 0.1 Compression Ratio (Uncompressed / Compressed)

Table 0.2 Storage cost in percentage

Compression

Ratio
Deering

Harry

(CBM)

TFAN

Open3DGC

OpenCTM

MG1

OpenCTM

MG2
Corto

Webgl-

Loader

Google

Draco

Angel 7 14 14 14 14 29 27 5 13 24 7 7

Armadillo 7 21 21 21 21 29 30 6 16 23 7 32

Body 5 13 12 13 12 12 11 5 10 12 5 5

Bunny 5 7 7 7 7 13 11 5 11 12 5 6

Cow 5 12 12 12 12 15 14 8 12 14 5 6

Dinosaur 6 10 10 11 11 17 16 6 12 16 6 6

Eight 4 13 11 13 11 14 13 8 10 12 5 5

Fandisk 5 19 18 19 19 21 25 8 13 19 6 6

Feline 6 17 17 17 17 22 20 6 13 18 6 6

Foot 6 12 12 12 12 18 17 7 13 17 6 6

Geosphere 4 12 7 13 8 11 9 8 10 11 5 10

Hand 7 26 26 26 26 27 28 9 15 23 7 7

Happy 8 24 24 24 24 25 25 8 15 21 7 7

Head 5 10 10 10 10 21 20 6 12 18 6 6

Horse 6 11 11 11 11 19 17 6 12 16 6 6

Nefertiti 5 7 6 7 6 10 9 5 9 11 5 5

Statue 9 15 15 15 15 29 27 7 14 26 7 30

Sculpt 6 11 11 11 11 18 15 5 12 16 6 18

Torus 7 17 16 17 16 45 42 15 16 28 6 6

Venus 6 10 10 10 10 18 13 5 12 14 5 6

EdgeBreaker

w/ BCCM and w/ CBCM

Alliez & Desbrun

w/ BCCM and w/ CBCM

Storage

Cost %
Deering

Harry

(CBM)

TFAN

Open3DGC

OpenCTM

MG1

OpenCTM

MG2
Corto

Webgl-

Loader

Google

Draco

Angel 14,571 7,3048 7,3211 7,214 7,214 3,5315 3,8374 20,411 7,8576 4,2268 16,2155 15,9176

Armadillo 14,8708 4,9814 4,9974 4,9504 4,9576 3,5303 3,448 18,2017 6,609 4,3844 15,9637 3,1822

Body 24,3782 7,9262 8,7148 7,7768 8,6192 8,9925 9,6575 20,9249 10,8778 8,8082 23,7062 20,7103

Bunny 22,3327 15,7987 16,1517 15,7092 16,0755 8,2852 9,3883 24,3752 9,7196 8,3943 22,3327 19,0647

Cow 22,9754 8,7936 8,9874 8,6846 8,8715 6,962 7,5649 14,042 8,6396 7,2637 20,6106 18,8721

Dinosaur 19,3113 10,006 10,0541 9,9537 9,9895 5,9099 6,3435 19,956 8,8709 6,352 18,8238 17,8566

Eight 25,4352 8,1337 9,6474 7,8532 9,247 7,47 8,2065 13,2957 10,1569 8,4506 22,5919 20,0184

Fandisk 20,5877 5,4519 5,5558 5,3409 5,4282 4,9047 4,1069 13,6403 7,8894 5,3952 19,0997 18,4276

Feline 17,1253 6,0898 6,1153 6,0581 6,07 4,7471 5,2345 18,1714 8,1223 5,6842 17,3479 17,1639

Foot 17,2297 8,557 8,6175 8,5074 8,5588 5,6811 6,0496 16,471 8,2083 6,1589 18,22 17,1169

Geosphere 28,8372 8,3932 14,7886 8,0444 13,6892 9,9049 12,1247 13,3298 10,0846 9,8203 24,7146 10,0634

Hand 14,6817 3,9787 3,9991 3,8911 3,9461 3,7595 3,6542 11,5788 6,8138 4,4698 16,3259 16,1147

Happy 14,0305 4,2415 4,2604 4,2124 4,2129 4,002 4,0892 13,9981 7,0533 4,7894 16,0267 15,7479

Head 20,1338 10,4778 10,5417 10,3515 10,389 4,7682 5,0828 18,4543 8,7078 5,5734 18,2254 17,8067

Horse 17,444 9,7283 9,7672 9,6889 9,7168 5,382 6,0572 19,9024 8,5024 6,3353 17,9464 17,5409

Nefertiti 23,724 16,0764 18,9507 15,797 18,58 10,4762 12,0502 22,7659 11,8392 9,7291 24,4825 21,4999

Statue 12,3531 7,0114 7,0277 6,9906 6,9937 3,4697 3,8073 14,8819 7,2182 3,951 15,1398 3,4124

Sculpt 18,4383 9,6155 9,6544 9,5736 9,5973 5,8692 6,7172 21,7518 8,3986 6,3601 18,7752 5,8247

Torus 16,2416 5,9724 6,304 5,9498 6,2813 2,2617 2,43 6,9436 6,4756 3,6115 17,1455 16,7497

Venus 19,6947 10,8335 10,9086 10,8132 10,8787 5,7894 8,0715 21,0699 9,0468 7,2462 20,9071 18,537

EdgeBreaker

w/ BCCM and w/ CBCM

Alliez & Desbrun

w/ BCCM and w/ CBCM

87

Table 0.3 Space savings in percentage

Table 0.4 Total bits per vertex (bpv)

Space

Savings %
Deering

Harry

(CBM)

TFAN

Open3DGC

OpenCTM

MG1

OpenCTM

MG2
Corto

Webgl-

Loader

Google

Draco

Angel 85,429 92,6952 92,6789 92,786 92,786 96,4685 96,1626 79,589 92,1424 95,7732 83,7845 84,0824

Armadillo 85,1292 95,0186 95,0026 95,0496 95,0424 96,4697 96,552 81,7983 93,391 95,6156 84,0363 96,8178

Body 75,6218 92,0738 91,2852 92,2232 91,3808 91,0075 90,3425 79,0751 89,1222 91,1918 76,2938 79,2897

Bunny 77,6673 84,2013 83,8483 84,2908 83,9245 91,7148 90,6117 75,6248 90,2804 91,6057 77,6673 80,9353

Cow 77,0246 91,2064 91,0126 91,3154 91,1285 93,038 92,4351 85,958 91,3604 92,7363 79,3894 81,1279

Dinosaur 80,6887 89,994 89,9459 90,0463 90,0105 94,0901 93,6565 80,044 91,1291 93,648 81,1762 82,1434

Eight 74,5648 91,8663 90,3526 92,1468 90,753 92,53 91,7935 86,7043 89,8431 91,5494 77,4081 79,9816

Fandisk 79,4123 94,5481 94,4442 94,6591 94,5718 95,0953 95,8931 86,3597 92,1106 94,6048 80,9003 81,5724

Feline 82,8747 93,9102 93,8847 93,9419 93,93 95,2529 94,7655 81,8286 91,8777 94,3158 82,6521 82,8361

Foot 82,7703 91,443 91,3825 91,4926 91,4412 94,3189 93,9504 83,529 91,7917 93,8411 81,78 82,8831

Geosphere 71,1628 91,6068 85,2114 91,9556 86,3108 90,0951 87,8753 86,6702 89,9154 90,1797 75,2854 89,9366

Hand 85,3183 96,0213 96,0009 96,1089 96,0539 96,2405 96,3458 88,4212 93,1862 95,5302 83,6741 83,8853

Happy 85,9695 95,7585 95,7396 95,7876 95,7871 95,998 95,9108 86,0019 92,9467 95,2106 83,9733 84,2521

Head 79,8662 89,5222 89,4583 89,6485 89,611 95,2318 94,9172 81,5457 91,2922 94,4266 81,7746 82,1933

Horse 82,556 90,2717 90,2328 90,3111 90,2832 94,618 93,9428 80,0976 91,4976 93,6647 82,0536 82,4591

Nefertiti 76,276 83,9236 81,0493 84,203 81,42 89,5238 87,9498 77,2341 88,1608 90,2709 75,5175 78,5001

Statue 87,6469 92,9886 92,9723 93,0094 93,0063 96,5303 96,1927 85,1181 92,7818 96,049 84,8602 96,5876

Sculpt 81,5617 90,3845 90,3456 90,4264 90,4027 94,1308 93,2828 78,2482 91,6014 93,6399 81,2248 94,1753

Torus 83,7584 94,0276 93,696 94,0502 93,7187 97,7383 97,57 93,0564 93,5244 96,3885 82,8545 83,2503

Venus 80,3053 89,1665 89,0914 89,1868 89,1213 94,2106 91,9285 78,9301 90,9532 92,7538 79,0929 81,463

EdgeBreaker

w/ BCCM and w/ CBCM

Alliez & Desbrun

w/ BCCM and w/ CBCM

bpv Deering
Harry

(CBM)

TFAN

Open3DGC

OpenCTM

MG1

OpenCTM

MG2
Corto

Webgl-

Loader

Google

Draco

Angel 89,4439 44,8405 44,9404 44,2829 44,2831 21,6783 23,556 125,2924 48,2336 25,9459 99,5385 97,7095

Armadillo 92,4417 30,9658 31,0654 30,7732 30,8179 21,9456 21,4342 113,1479 41,0836 27,2549 99,2358 19,7817

Body 117,5584 38,2222 42,0253 37,5021 41,564 43,3643 46,571 100,9058 52,4557 42,4754 114,3179 99,8706

Bunny 116,2195 82,2169 84,0535 81,751 83,6573 43,1165 48,8568 126,8487 50,581 43,6841 116,2195 99,2129

Cow 119,5592 45,7603 46,7686 45,1928 46,1653 36,2287 39,3664 73,0716 44,9587 37,7989 107,2534 98,2066

Dinosaur 106,4256 55,1437 55,4087 54,8554 55,0527 32,5697 34,9595 109,9787 48,8881 35,0061 103,739 98,4091

Eight 124,0731 39,6762 47,0601 38,3081 45,107 36,4386 40,0313 64,8564 49,5457 41,2219 110,2037 97,6501

Fandisk 108,6863 28,7815 29,33 28,1958 28,6567 25,8928 21,6809 72,0099 41,6494 28,4825 100,8309 97,2825

Feline 98,1563 34,9044 35,0505 34,7226 34,7913 27,2084 30,0021 104,1521 46,5541 32,5797 99,4322 98,3772

Foot 99,0224 49,1789 49,5264 48,8938 49,1893 32,6502 34,7684 94,6621 47,1749 35,3962 104,7141 98,3738

Geosphere 134,716 39,2099 69,0864 37,5802 63,9506 46,2716 56,642 62,2716 47,1111 45,8765 115,4568 47,0123

Hand 89,2247 24,1794 24,3037 23,6476 23,9813 22,8478 22,2076 70,3675 41,4093 27,1642 99,2172 97,9338

Happy 87,5816 26,4763 26,5942 26,2948 26,298 24,9817 25,5261 87,3797 44,0285 29,8965 100,0429 98,3022

Head 109,1659 56,8107 57,1573 56,1258 56,3295 25,8532 27,5587 100,0591 47,2139 30,2193 98,8184 96,5482

Horse 97,7909 54,5371 54,7551 54,3159 54,4726 30,1716 33,9566 111,5732 47,6647 35,5158 100,6075 98,3342

Nefertiti 111,3043 75,4247 88,9097 74,1137 87,1706 49,1505 56,5351 106,8094 55,5452 45,6455 114,8629 100,8696

Statue 81,5886 46,3081 46,416 46,1711 46,1917 22,9163 25,146 98,2904 47,6741 26,0949 99,9937 22,5382

Sculpt 104,1338 54,3053 54,5248 54,0687 54,2024 33,1473 37,9364 122,8469 47,4329 35,9197 106,0361 32,8958

Torus 93,1292 34,2459 36,1471 34,116 36,0171 12,9688 13,9334 39,8145 37,1312 20,7085 98,312 96,0426

Venus 105,0643 57,7929 58,1935 57,6846 58,0339 30,8844 43,0585 112,4006 48,2612 38,656 111,5317 98,8882

EdgeBreaker

w/ BCCM and w/ CBCM

Alliez & Desbrun

w/ BCCM and w/ CBCM

88

Table 0.5 Geometry information only compression ratio

Table 0.6 Geometry information only storage cost in percentage

Geometry

Comp. Rati.
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 4 6 4 5 5 5 3 5 5 4

Armadillo 6 9 6 7 7 6 6 6 6 5

Body 7 7 6 6 6 5 5 6 5 5

Bunny 4 4 3 3 3 3 3 3 3 3

Cow 4 6 4 5 5 5 4 6 4 4

Dinosaur 4 5 4 4 4 4 3 4 4 4

Eight 5 6 5 5 5 5 4 7 4 5

Fandisk 6 9 6 7 7 7 5 7 7 6

Feline 5 8 5 6 6 5 4 6 6 5

Foot 5 6 5 5 5 4 4 5 4 4

Geosphere 6 5 7 6 6 6 5 7 5 6

Hand 6 11 6 8 8 7 6 7 8 6

Happy 6 10 6 7 7 7 5 7 7 6

Head 4 5 3 4 4 4 3 4 4 4

Horse 4 5 4 4 4 4 3 4 4 4

Nefertiti 4 4 3 4 4 4 3 4 3 3

Statue 5 7 4 4 4 4 4 4 4 4

Sculpt 4 5 4 4 4 4 3 4 4 4

Torus 5 7 4 6 6 5 4 7 5 4

Venus 4 5 4 4 4 4 3 5 4 4

Geometry

Stor. Cost.
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 28,1888 18,0734 30,4543 24,1593 24,1121 24,4505 34,1547 23,6183 24,8444 29,3553

Armadillo 17,8885 11,5145 19,4154 16,2436 16,3407 18,3053 19,8115 17,4984 17,514 21,0336

Body 16,4792 14,6534 17,9855 18,2096 18,2763 21,227 23,2958 16,7843 22,7953 21,4129

Bunny 33,0881 30,5706 36,3474 37,4498 37,6383 39,0224 41,4405 36,7867 42,4268 39,4513

Cow 27,2461 18,4778 27,6844 22,1546 22,3438 22,3508 27,2262 18,9267 26,5458 25,6245

Dinosaur 30,3589 22,1805 32,9147 27,3002 27,3993 27,0756 34,4007 26,4772 29,1193 31,7852

Eight 21,071 17,5968 21,7393 20,0354 20,1239 20,4647 25,0232 15,9637 25,8553 23,1954

Fandisk 18,304 11,7116 19,8785 14,3177 14,5116 15,1183 22,425 14,3321 15,5465 19,5887

Feline 21,999 14,0031 24,1596 17,4182 17,4521 20,0905 26,2431 17,3551 18,2094 22,5352

Foot 21,4581 16,9109 23,1812 23,0048 23,0555 25,1834 25,2109 23,7834 25,5239 25,9978

Geosphere 17,1044 20,2353 16,5371 19,1637 18,8485 16,9363 20,6136 15,2763 22,883 17,8189

Hand 18,217 9,9065 18,958 13,1745 12,8682 15,5595 18,057 14,9306 14,1419 18,4041

Happy 17,6506 10,2277 19,1657 14,3804 14,4179 15,0782 21,0758 14,4821 14,8994 18,6797

Head 31,4384 23,6363 33,7718 27,3191 27,4345 26,7581 36,5035 26,2395 28,6777 32,5661

Horse 30,7352 22,1205 33,2095 25,8522 26,0466 25,5878 35,8292 25,0496 27,0487 31,6204

Nefertiti 31,8772 31,3844 34,0166 32,8965 32,7845 30,3987 42,4843 29,5251 43,3244 34,263

Statue 23,6071 16,542 26,4029 25,2181 25,1567 29,1723 29,6293 27,2934 25,6454 31,7998

Sculpt 29,128 21,732 31,7282 26,1135 26,2021 26,6486 34,9111 25,5612 27,45 30,794

Torus 21,3958 15,2317 25,0002 19,7085 19,7033 21,3344 31,9194 14,4533 22,3404 30,233

Venus 29,6606 22,7279 32,1945 26,0471 26,2457 25,3538 35,4252 24,9245 27,3671 31,3559

89

Table 0.7 Geometry information only space savings in percentage

Table 0.8 Geometry information only bit per vertex (bpv)

Geometry

Spac. Sav.
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 71,8112 81,9266 69,5457 75,8407 75,8879 75,5495 65,8453 76,3817 75,1556 70,6447

Armadillo 82,1115 88,4855 80,5846 83,7564 83,6593 81,6947 80,1885 82,5016 82,486 78,9664

Body 83,5208 85,3466 82,0145 81,7904 81,7237 78,773 76,7042 83,2157 77,2047 78,5871

Bunny 66,9119 69,4294 63,6526 62,5502 62,3617 60,9776 58,5595 63,2133 57,5732 60,5487

Cow 72,7539 81,5222 72,3156 77,8454 77,6562 77,6492 72,7738 81,0733 73,4542 74,3755

Dinosaur 69,6411 77,8195 67,0853 72,6998 72,6007 72,9244 65,5993 73,5228 70,8807 68,2148

Eight 78,929 82,4032 78,2607 79,9646 79,8761 79,5353 74,9768 84,0363 74,1447 76,8046

Fandisk 81,696 88,2884 80,1215 85,6823 85,4884 84,8817 77,575 85,6679 84,4535 80,4113

Feline 78,001 85,9969 75,8404 82,5818 82,5479 79,9095 73,7569 82,6449 81,7906 77,4648

Foot 78,5419 83,0891 76,8188 76,9952 76,9445 74,8166 74,7891 76,2166 74,4761 74,0022

Geosphere 82,8956 79,7647 83,4629 80,8363 81,1515 83,0637 79,3864 84,7237 77,117 82,1811

Hand 81,783 90,0935 81,042 86,8255 87,1318 84,4405 81,943 85,0694 85,8581 81,5959

Happy 82,3494 89,7723 80,8343 85,6196 85,5821 84,9218 78,9242 85,5179 85,1006 81,3203

Head 68,5616 76,3637 66,2282 72,6809 72,5655 73,2419 63,4965 73,7605 71,3223 67,4339

Horse 69,2648 77,8795 66,7905 74,1478 73,9534 74,4122 64,1708 74,9504 72,9513 68,3796

Nefertiti 68,1228 68,6156 65,9834 67,1035 67,2155 69,6013 57,5157 70,4749 56,6756 65,737

Statue 76,3929 83,458 73,5971 74,7819 74,8433 70,8277 70,3707 72,7066 74,3546 68,2002

Sculpt 70,872 78,268 68,2718 73,8865 73,7979 73,3514 65,0889 74,4388 72,55 69,206

Torus 78,6042 84,7683 74,9998 80,2915 80,2967 78,6656 68,0806 85,5467 77,6596 69,767

Venus 70,3394 77,2721 67,8055 73,9529 73,7543 74,6462 64,5748 75,0755 72,6329 68,6441

Geometry

bpv
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 66,6758 42,7496 72,0344 57,1447 57,0331 57,8333 80,787 55,865 58,7652 69,435

Armadillo 45,1604 29,069 49,0153 41,0079 41,2531 46,2128 50,0153 44,1758 44,2152 53,1006

Body 38,8973 34,5879 42,4529 42,9817 43,1392 50,1041 54,9873 39,6174 53,8059 50,5429

Bunny 85,51 79,004 93,9331 96,7818 97,2691 100,8461 107,095 95,0683 109,6439 101,9545

Cow 63,876 43,3196 64,9036 51,9394 52,3829 52,3994 63,8292 44,3719 62,2342 60,0744

Dinosaur 71,9369 52,5578 77,9929 64,6891 64,924 64,1569 81,5141 62,7389 68,9996 75,3166

Eight 49,7232 41,5248 51,3003 47,2794 47,4883 48,2924 59,0496 37,671 61,0131 54,7363

Fandisk 42,4587 27,1666 46,1109 33,212 33,6618 35,069 52,0179 33,2454 36,0624 45,4388

Feline 50,9998 32,4632 56,0088 40,3802 40,4588 46,5753 60,8388 40,2341 42,2145 52,2429

Foot 59,1941 46,6502 63,9473 63,4609 63,6006 69,4704 69,5463 65,6086 70,4097 71,7173

Geosphere 40,1975 47,5556 38,8642 45,037 44,2963 39,8025 48,4444 35,9012 53,7778 41,8765

Hand 40,8061 22,1905 42,466 29,5109 28,8248 34,8532 40,4477 33,4445 31,6778 41,2252

Happy 41,2819 23,9209 44,8254 33,6334 33,7209 35,2653 49,2927 33,8712 34,8473 43,6886

Head 74,0938 55,7061 79,5933 64,3855 64,6576 63,0635 86,0313 61,8412 67,5875 76,7516

Horse 72,3567 52,076 78,1817 60,861 61,3188 60,2388 84,3488 58,9717 63,678 74,4406

Nefertiti 76,1472 74,9699 81,2575 78,5819 78,3144 72,6154 101,4849 70,5284 103,4916 81,8462

Statue 62,635 43,8899 70,0531 66,9094 66,7466 77,4008 78,6133 72,4157 68,0432 84,3723

Sculpt 69,3726 51,758 75,5653 62,1931 62,404 63,4675 83,1457 60,8777 65,3761 73,3404

Torus 50,4891 35,9432 58,9946 46,5075 46,4953 50,3443 75,3222 34,1063 52,7181 71,3429

Venus 71,6613 54,9115 77,7833 62,9308 63,4107 61,2559 85,5888 60,2187 66,12 75,7571

90

Table 0.9 EdgeBreaker CLERS only compression ratio

Table 0.10 EdgeBreaker CLERS only storage cost in percentage

EdgeBreaker

Comp. Rati.
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 23 22 18 19 17 17 17 17 16 17

Armadillo 26 25 20 20 18 19 19 19 16 18

Body 14 7 12 9 10 10 11 10 8 11

Bunny 15 10 13 10 11 11 12 11 9 12

Cow 20 14 17 14 14 15 15 15 13 15

Dinosaur 19 17 15 14 14 14 14 14 13 14

Eight 24 9 22 20 22 23 24 23 20 23

Fandisk 30 23 24 21 20 21 22 22 18 22

Feline 20 19 16 16 15 15 15 15 14 15

Foot 19 17 16 14 14 14 14 14 13 14

Geosphere 12 3 11 11 15 13 15 12 13 15

Hand 25 23 19 20 18 19 19 19 17 18

Happy 19 18 15 16 15 15 14 15 14 14

Head 44 34 35 32 27 30 34 31 27 30

Horse 20 18 16 15 15 15 14 14 14 15

Nefertiti 10 4 9 8 9 8 9 9 7 9

Statue 20 20 16 17 15 16 15 15 15 15

Sculpt 19 18 16 15 14 15 14 14 14 14

Torus 344 236 262 275 214 217 214 198 192 134

Venus 17 15 14 13 13 13 13 12 12 13

EdgeBreaker

Stor. Cost %
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 4,356 4,564 5,5572 5,4771 6,1891 5,9138 5,9239 5,9375 6,5769 6,1314

Armadillo 3,9517 4,1593 5,0929 5,0063 5,7475 5,4154 5,3215 5,4355 6,3258 5,6054

Body 7,5911 15,5347 8,8602 11,3043 10,6463 10,3643 9,7532 10,0353 12,6675 9,6827

Bunny 6,6793 10,4976 7,9483 10,3195 9,7851 9,2285 8,9057 9,3287 11,1321 9,0838

Cow 5,0882 7,19 6,1563 7,5059 7,4197 7,1096 6,7823 7,1269 8,3041 7,0005

Dinosaur 5,3886 5,9408 6,6682 7,3341 7,2761 7,2855 7,5664 7,6789 7,9408 7,4325

Eight 4,1712 11,5142 4,584 5,0185 4,584 4,4102 4,3015 4,4102 5,0619 4,4753

Fandisk 3,3654 4,5087 4,1997 4,7791 5,155 4,7739 4,5525 4,7018 5,585 4,7224

Feline 5,0857 5,3901 6,3915 6,6572 6,8233 6,8935 7,0042 7,1388 7,2147 7,0382

Foot 5,2705 5,9947 6,5457 7,2416 7,1983 7,2066 7,3914 7,5229 7,9141 7,2615

Geosphere 8,977 45,5115 9,7077 9,8121 7,0981 8,0376 7,0981 8,6639 7,7244 6,9937

Hand 4,1435 4,4023 5,2661 5,0539 5,8116 5,4788 5,4047 5,5132 6,1657 5,6813

Happy 5,3217 5,5673 6,6876 6,5869 7,0185 6,9629 7,2021 7,1301 7,3785 7,3836

Head 2,302 3,0242 2,9387 3,1766 3,7407 3,376 3,0242 3,272 3,8461 3,3604

Horse 5,129 5,5833 6,3803 6,9187 6,9859 7,0808 7,2076 7,3386 7,5309 7,1354

Nefertiti 10,2464 29,1713 11,2542 13,7738 12,374 12,8779 11,8141 12,262 14,8376 11,6461

Statue 5,038 5,2628 6,3698 6,1615 6,7491 6,6129 6,8076 6,6856 7,12 7,0056

Sculpt 5,3076 5,7649 6,5491 7,0708 7,1485 7,1236 7,4427 7,4815 7,5933 7,2688

Torus 0,2908 0,4248 0,3827 0,3644 0,4687 0,4614 0,4678 0,5053 0,5231 0,7517

Venus 6,0048 6,8395 7,3557 8,3054 8,2853 8,2046 8,2913 8,5434 9,0475 8,2107

91

Table 0.11 EdgeBreaker CLERS only space savings in percentage

Table 0.12 EdgeBreaker CLERS only bit per vertex (bpv)

EdgeBreaker

Space Sav. %
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 95,644 95,436 94,4428 94,5229 93,8109 94,0862 94,0761 94,0625 93,4231 93,8686

Armadillo 96,0483 95,8407 94,9071 94,9937 94,2525 94,5846 94,6785 94,5645 93,6742 94,3946

Body 92,4089 84,4653 91,1398 88,6957 89,3537 89,6357 90,2468 89,9647 87,3325 90,3173

Bunny 93,3207 89,5024 92,0517 89,6805 90,2149 90,7715 91,0943 90,6713 88,8679 90,9162

Cow 94,9118 92,81 93,8437 92,4941 92,5803 92,8904 93,2177 92,8731 91,6959 92,9995

Dinosaur 94,6114 94,0592 93,3318 92,6659 92,7239 92,7145 92,4336 92,3211 92,0592 92,5675

Eight 95,8288 88,4858 95,416 94,9815 95,416 95,5898 95,6985 95,5898 94,9381 95,5247

Fandisk 96,6346 95,4913 95,8003 95,2209 94,845 95,2261 95,4475 95,2982 94,415 95,2776

Feline 94,9143 94,6099 93,6085 93,3428 93,1767 93,1065 92,9958 92,8612 92,7853 92,9618

Foot 94,7295 94,0053 93,4543 92,7584 92,8017 92,7934 92,6086 92,4771 92,0859 92,7385

Geosphere 91,023 54,4885 90,2923 90,1879 92,9019 91,9624 92,9019 91,3361 92,2756 93,0063

Hand 95,8565 95,5977 94,7339 94,9461 94,1884 94,5212 94,5953 94,4868 93,8343 94,3187

Happy 94,6783 94,4327 93,3124 93,4131 92,9815 93,0371 92,7979 92,8699 92,6215 92,6164

Head 97,698 96,9758 97,0613 96,8234 96,2593 96,624 96,9758 96,728 96,1539 96,6396

Horse 94,871 94,4167 93,6197 93,0813 93,0141 92,9192 92,7924 92,6614 92,4691 92,8646

Nefertiti 89,7536 70,8287 88,7458 86,2262 87,626 87,1221 88,1859 87,738 85,1624 88,3539

Statue 94,962 94,7372 93,6302 93,8385 93,2509 93,3871 93,1924 93,3144 92,88 92,9944

Sculpt 94,6924 94,2351 93,4509 92,9292 92,8515 92,8764 92,5573 92,5185 92,4067 92,7312

Torus 99,7092 99,5752 99,6173 99,6356 99,5313 99,5386 99,5322 99,4947 99,4769 99,2483

Venus 93,9952 93,1605 92,6443 91,6946 91,7147 91,7954 91,7087 91,4566 90,9525 91,7893

EdgeBreaker

Clers bpv
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 2,0909 2,1908 2,6675 2,6291 2,9708 2,8387 2,8435 2,85 3,157 2,9431

Armadillo 1,8968 1,9964 2,4445 2,403 2,7587 2,5993 2,5543 2,609 3,0363 2,6905

Body 3,6343 7,4374 4,2419 5,4121 5,097 4,962 4,6695 4,8045 6,0647 4,6357

Bunny 3,2129 5,0495 3,8233 4,9639 4,7068 4,4391 4,2838 4,4873 5,3548 4,3695

Cow 2,4408 3,449 2,9532 3,6006 3,5592 3,4105 3,2534 3,4187 3,9835 3,3581

Dinosaur 2,5859 2,8509 3,2 3,5195 3,4917 3,4962 3,631 3,685 3,8107 3,5667

Eight 2,0052 5,5352 2,2037 2,4125 2,2037 2,1201 2,0679 2,1201 2,4334 2,1514

Fandisk 1,6148 2,1634 2,0151 2,2931 2,4735 2,2907 2,1844 2,2561 2,6798 2,2659

Feline 2,4412 2,5874 3,068 3,1956 3,2753 3,309 3,3621 3,4268 3,4632 3,3785

Foot 2,5288 2,8762 3,1406 3,4744 3,4537 3,4577 3,5463 3,6094 3,7971 3,484

Geosphere 4,2469 21,5309 4,5926 4,642 3,358 3,8025 3,358 4,0988 3,6543 3,3086

Hand 1,9889 2,1132 2,5278 2,426 2,7897 2,6299 2,5943 2,6464 2,9596 2,7271

Happy 2,5554 2,6733 3,2113 3,1629 3,3701 3,3435 3,4583 3,4237 3,543 3,5455

Head 1,1047 1,4513 1,4102 1,5244 1,7951 1,6201 1,4513 1,5702 1,8457 1,6126

Horse 2,4611 2,6792 3,0616 3,3199 3,3522 3,3977 3,4586 3,5214 3,6137 3,4239

Nefertiti 4,8963 13,9398 5,3779 6,5819 5,913 6,1538 5,6455 5,8595 7,0903 5,5652

Statue 2,4182 2,5261 3,0575 2,9575 3,2396 3,1742 3,2676 3,2091 3,4176 3,3627

Sculpt 2,5473 2,7668 3,1431 3,3935 3,4308 3,4189 3,572 3,5907 3,6443 3,4886

Torus 0,1396 0,2039 0,1837 0,1749 0,225 0,2215 0,2245 0,2425 0,2511 0,3608

Venus 2,8815 3,2821 3,5298 3,9855 3,9758 3,9371 3,9787 4,0997 4,3416 3,94

92

Table 0.13 Alliez & Desbrun connectivity only compression ratio

Table 0.14 Alliez & Desbrun connectivity only storage cost in percentage

Alliez Desbrun

Comp. Ratio
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 16 16 13 13 13 13 12 12 12 12

Armadillo 15 14 12 12 12 11 11 11 11 11

Body 9 4 8 6 6 6 6 7 5 7

Bunny 9 6 8 6 6 7 7 7 5 7

Cow 13 9 11 9 9 9 10 10 8 10

Dinosaur 11 10 10 8 8 8 8 8 8 8

Eight 37 7 34 28 38 35 37 34 37 38

Fandisk 24 17 18 15 15 16 17 17 13 16

Feline 11 11 10 9 9 9 8 8 8 9

Foot 11 10 10 8 8 8 8 8 7 8

Geosphere 10 2 8 8 12 12 14 12 12 15

Hand 14 14 12 17 11 12 11 11 11 11

Happy 11 11 9 9 9 9 8 8 8 8

Head 58 39 42 40 34 39 43 41 32 38

Horse 11 11 10 8 8 8 8 8 8 8

Nefertiti 7 2 6 5 5 5 6 6 5 6

Statue 11 11 10 9 9 9 8 9 9 9

Sculpt 11 10 10 8 8 8 8 8 8 8

Torus 1709 325 1823 793 960 2279 771 2486 663 720

Venus 9 8 8 7 7 7 7 7 6 7

Alliez Desbrun

Stor. Cost %
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 6,3833 6,3841 7,809 8,1229 8,1701 8,3252 8,4808 8,5165 8,5655 8,6289

Armadillo 7,0987 7,285 8,5896 9,0453 9,0516 9,2377 9,6569 9,5232 9,5982 9,6693

Body 12,1085 28,9855 13,5577 19,4016 18,2796 17,2978 16,9705 16,0355 22,0196 16,316

Bunny 11,3596 19,2427 12,9318 17,4491 16,8512 15,9876 15,8547 15,3454 20,0177 15,6776

Cow 7,7493 11,7721 9,3789 11,9316 11,3732 11,2365 10,7578 10,5755 13,4131 10,735

Dinosaur 9,3096 10,109 10,7563 12,7606 12,703 12,7744 13,1062 12,8412 14,0945 12,6017

Eight 2,7202 14,81 2,9793 3,6701 2,6339 2,8929 2,7634 2,9793 2,7202 2,677

Fandisk 4,2883 6,2085 5,6268 6,7542 6,7696 6,4865 6,0644 6,0952 7,7477 6,2857

Feline 9,386 9,6712 10,7629 12,3571 12,3345 12,4838 12,913 12,621 13,1189 12,4251

Foot 9,3304 10,5594 10,6889 13,0506 12,9742 13,0506 13,2897 12,9277 14,5752 12,652

Geosphere 10,6996 68,3128 12,7572 13,3745 8,4362 9,0535 7,4074 8,4362 8,8477 6,9959

Hand 7,3637 7,4575 8,7714 6,0676 9,2707 8,3903 9,7927 9,6503 9,661 9,8583

Happy 9,8138 9,8267 11,2328 12,0931 12,0783 12,2472 13,1032 12,6641 12,6506 12,8082

Head 1,7484 2,597 2,4205 2,5515 3,027 2,6056 2,3464 2,4888 3,1779 2,6995

Horse 9,3029 9,954 10,6955 12,6555 12,5985 12,7274 13,1877 12,7776 13,8171 12,5215

Nefertiti 14,8559 50,5543 17,4058 23,8359 20,9534 21,1752 19,2905 18,4035 23,9468 19,0687

Statue 9,4767 9,5623 10,78 11,3804 11,4787 11,6193 12,5378 12,1278 11,9648 12,3055

Sculpt 9,5905 10,1457 10,9437 12,8708 12,7857 12,9419 13,3363 13,061 13,8591 12,7873

Torus 0,0585 0,3082 0,0549 0,1262 0,1042 0,0439 0,1298 0,0402 0,1509 0,139

Venus 11,4183 12,8566 12,7689 16,008 15,7052 15,9602 16,251 15,7291 17,7331 15,5618

93

Table 0.15 Alliez & Desbrun connectivity only space savings in percentage

Table 0.16 Alliez & Desbrun connectivity only bit per vertex (bpv)

Alliez Desbrun

Space Sav. %
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 93,6167 93,6159 92,191 91,8771 91,8299 91,6748 91,5192 91,4835 91,4345 91,3711

Armadillo 92,9013 92,715 91,4104 90,9547 90,9484 90,7623 90,3431 90,4768 90,4018 90,3307

Body 87,8915 71,0145 86,4423 80,5984 81,7204 82,7022 83,0295 83,9645 77,9804 83,684

Bunny 88,6404 80,7573 87,0682 82,5509 83,1488 84,0124 84,1453 84,6546 79,9823 84,3224

Cow 92,2507 88,2279 90,6211 88,0684 88,6268 88,7635 89,2422 89,4245 86,5869 89,265

Dinosaur 90,6904 89,891 89,2437 87,2394 87,297 87,2256 86,8938 87,1588 85,9055 87,3983

Eight 97,2798 85,19 97,0207 96,3299 97,3661 97,1071 97,2366 97,0207 97,2798 97,323

Fandisk 95,7117 93,7915 94,3732 93,2458 93,2304 93,5135 93,9356 93,9048 92,2523 93,7143

Feline 90,614 90,3288 89,2371 87,6429 87,6655 87,5162 87,087 87,379 86,8811 87,5749

Foot 90,6696 89,4406 89,3111 86,9494 87,0258 86,9494 86,7103 87,0723 85,4248 87,348

Geosphere 89,3004 31,6872 87,2428 86,6255 91,5638 90,9465 92,5926 91,5638 91,1523 93,0041

Hand 92,6363 92,5425 91,2286 93,9324 90,7293 91,6097 90,2073 90,3497 90,339 90,1417

Happy 90,1862 90,1733 88,7672 87,9069 87,9217 87,7528 86,8968 87,3359 87,3494 87,1918

Head 98,2516 97,403 97,5795 97,4485 96,973 97,3944 97,6536 97,5112 96,8221 97,3005

Horse 90,6971 90,046 89,3045 87,3445 87,4015 87,2726 86,8123 87,2224 86,1829 87,4785

Nefertiti 85,1441 49,4457 82,5942 76,1641 79,0466 78,8248 80,7095 81,5965 76,0532 80,9313

Statue 90,5233 90,4377 89,22 88,6196 88,5213 88,3807 87,4622 87,8722 88,0352 87,6945

Sculpt 90,4095 89,8543 89,0563 87,1292 87,2143 87,0581 86,6637 86,939 86,1409 87,2127

Torus 99,9415 99,6918 99,9451 99,8738 99,8958 99,9561 99,8702 99,9598 99,8491 99,861

Venus 88,5817 87,1434 87,2311 83,992 84,2948 84,0398 83,749 84,2709 82,2669 84,4382

Alliez Desbrun

bpv
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 1,5333 1,5335 1,8757 1,9511 1,9625 1,9997 2,0371 2,0457 2,0575 2,0727

Armadillo 1,7042 1,7489 2,0621 2,1715 2,173 2,2177 2,3183 2,2862 2,3042 2,3213

Body 2,9142 6,9761 3,263 4,6695 4,3994 4,1632 4,0844 3,8594 5,2996 3,9269

Bunny 2,747 4,6533 3,1272 4,2195 4,075 3,8661 3,834 3,7108 4,8407 3,7912

Cow 1,8733 2,8457 2,2672 2,8843 2,7493 2,7163 2,6006 2,5565 3,2424 2,595

Dinosaur 2,2977 2,495 2,6547 3,1494 3,1352 3,1528 3,2347 3,1693 3,4786 3,1102

Eight 0,658 3,5822 0,7206 0,8877 0,6371 0,6997 0,6684 0,7206 0,658 0,6475

Fandisk 1,0292 1,49 1,3504 1,621 1,6247 1,5568 1,4554 1,4629 1,8595 1,5086

Feline 2,2594 2,3281 2,5909 2,9747 2,9692 3,0051 3,1085 3,0382 3,158 2,991

Foot 2,2436 2,5391 2,5703 3,1382 3,1198 3,1382 3,1957 3,1086 3,5048 3,0423

Geosphere 2,5679 16,3951 3,0617 3,2099 2,0247 2,1728 1,7778 2,0247 2,1235 1,679

Hand 1,7683 1,7908 2,1064 1,4571 2,2263 2,0148 2,3516 2,3174 2,32 2,3674

Happy 2,374 2,3771 2,7172 2,9253 2,9218 2,9626 3,1697 3,0635 3,0602 3,0983

Head 0,4197 0,6234 0,581 0,6125 0,7267 0,6255 0,5633 0,5975 0,7629 0,648

Horse 2,2399 2,3967 2,5752 3,0471 3,0334 3,0644 3,1753 3,0765 3,3268 3,0149

Nefertiti 3,5853 12,2007 4,2007 5,7525 5,0569 5,1104 4,6555 4,4415 5,7793 4,602

Statue 2,2812 2,3018 2,595 2,7395 2,7632 2,797 3,0181 2,9194 2,8802 2,9622

Sculpt 2,3107 2,4445 2,6367 3,101 3,0805 3,1182 3,2132 3,1469 3,3391 3,0809

Torus 0,014 0,074 0,0132 0,0303 0,025 0,0105 0,0312 0,0097 0,0362 0,0334

Venus 2,7731 3,1224 3,1011 3,8878 3,8142 3,8761 3,9468 3,82 4,3067 3,7794

94

Table 0.17 Face Fixer connectivity only compression ratio

Table 0.18 Face Fixer connectivity only storage cost in percentage

Face Fixer

Comp. Rat.
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 38 37 29 31 26 26 28 29 25 26

Armadillo 42 41 32 35 28 28 33 31 28 29

Body 20 11 16 14 14 14 15 15 12 15

Bunny 23 15 19 16 16 16 17 17 14 16

Cow 32 23 26 23 21 22 24 23 19 22

Dinosaur 31 28 24 24 20 21 22 22 18 22

Eight 31 13 25 24 24 24 25 26 23 24

Fandisk 48 36 37 36 29 32 35 34 28 32

Feline 33 31 25 26 22 22 25 24 20 23

Foot 31 28 25 24 21 22 23 23 18 22

Geosphere 12 4 10 10 12 11 12 12 11 12

Hand 40 38 31 34 28 28 31 31 27 28

Happy 31 30 24 25 21 22 23 23 20 21

Head 71 54 55 53 39 46 53 49 43 43

Horse 32 30 25 26 21 22 24 24 19 23

Nefertiti 13 6 11 10 10 11 10 11 9 11

Statue 33 32 25 28 24 23 25 26 23 23

Sculpt 31 29 25 25 21 21 23 23 19 22

Torus 498 321 399 404 297 300 267 281 291 166

Venus 28 24 22 21 18 19 20 20 16 19

Face Fixer

Stor. Cost %
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 2,6661 2,7447 3,4963 3,2603 3,9638 3,9731 3,6201 3,566 4,1131 3,8926

Armadillo 2,3974 2,4872 3,2075 2,924 3,5961 3,6653 3,1092 3,2318 3,6507 3,5388

Body 5,0919 9,5757 6,3791 7,4965 7,3833 7,2419 7,058 7,0014 8,4441 7,1004

Bunny 4,3717 6,8291 5,4171 6,3268 6,6458 6,2521 6,1503 6,2453 7,5691 6,2521

Cow 3,1462 4,3496 3,9783 4,4115 4,9445 4,6556 4,2671 4,3771 5,4671 4,5697

Dinosaur 3,3081 3,6186 4,1799 4,2993 5,0361 4,8954 4,6524 4,5878 5,5676 4,7419

Eight 3,3127 7,9144 4,0732 4,2795 4,3052 4,2408 4,0861 3,9701 4,4986 4,215

Fandisk 2,1128 2,778 2,758 2,8537 3,5374 3,1515 2,9185 2,9463 3,6531 3,2025

Feline 3,1 3,242 4,0025 3,9155 4,6788 4,5733 4,146 4,2367 5,1279 4,4801

Foot 3,2334 3,6565 4,1226 4,2493 4,9998 4,7343 4,3861 4,5387 5,6026 4,6635

Geosphere 8,7244 30,3249 10,1083 10,349 9,0253 9,1456 9,0253 8,8448 9,9278 8,7244

Hand 2,5335 2,6578 3,3201 2,9968 3,6976 3,6927 3,3281 3,3188 3,7908 3,6457

Happy 3,2858 3,3811 4,2113 4,0721 4,8153 4,7204 4,3923 4,3763 5,1107 4,7675

Head 1,4102 1,8834 1,8484 1,9108 2,5941 2,2131 1,8903 2,0568 2,3404 2,3643

Horse 3,1362 3,3799 4,0165 3,9979 4,7841 4,6053 4,2467 4,3228 5,2772 4,5056

Nefertiti 7,7346 18,3912 9,5222 10,7941 10,0034 9,8316 10,1753 9,7972 11,2754 9,5909

Statue 3,0886 3,1583 4,0121 3,6435 4,3284 4,4516 4,0019 3,9874 4,5411 4,4566

Sculpt 3,2501 3,4969 4,1284 4,1507 4,9089 4,765 4,35 4,4776 5,4118 4,6807

Torus 0,2011 0,3116 0,2513 0,2477 0,3368 0,3344 0,3752 0,3571 0,3448 0,6054

Venus 3,7027 4,1669 4,6371 4,92 5,6199 5,3539 5,1037 5,2173 6,2654 5,3818

95

Table 0.19 Face Fixer connectivity only space savings in percentage

Table 0.20 Face Fixer connectivity only bit per vertex (bpv)

Face Fixer

Spac. Sav. %
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 97,3339 97,2553 96,5037 96,7397 96,0362 96,0269 96,3799 96,434 95,8869 96,1074

Armadillo 97,6026 97,5128 96,7925 97,076 96,4039 96,3347 96,8908 96,7682 96,3493 96,4612

Body 94,9081 90,4243 93,6209 92,5035 92,6167 92,7581 92,942 92,9986 91,5559 92,8996

Bunny 95,6283 93,1709 94,5829 93,6732 93,3542 93,7479 93,8497 93,7547 92,4309 93,7479

Cow 96,8538 95,6504 96,0217 95,5885 95,0555 95,3444 95,7329 95,6229 94,5329 95,4303

Dinosaur 96,6919 96,3814 95,8201 95,7007 94,9639 95,1046 95,3476 95,4122 94,4324 95,2581

Eight 96,6873 92,0856 95,9268 95,7205 95,6948 95,7592 95,9139 96,0299 95,5014 95,785

Fandisk 97,8872 97,222 97,242 97,1463 96,4626 96,8485 97,0815 97,0537 96,3469 96,7975

Feline 96,9 96,758 95,9975 96,0845 95,3212 95,4267 95,854 95,7633 94,8721 95,5199

Foot 96,7666 96,3435 95,8774 95,7507 95,0002 95,2657 95,6139 95,4613 94,3974 95,3365

Geosphere 91,2756 69,6751 89,8917 89,651 90,9747 90,8544 90,9747 91,1552 90,0722 91,2756

Hand 97,4665 97,3422 96,6799 97,0032 96,3024 96,3073 96,6719 96,6812 96,2092 96,3543

Happy 96,7142 96,6189 95,7887 95,9279 95,1847 95,2796 95,6077 95,6237 94,8893 95,2325

Head 98,5898 98,1166 98,1516 98,0892 97,4059 97,7869 98,1097 97,9432 97,6596 97,6357

Horse 96,8638 96,6201 95,9835 96,0021 95,2159 95,3947 95,7533 95,6772 94,7228 95,4944

Nefertiti 92,2654 81,6088 90,4778 89,2059 89,9966 90,1684 89,8247 90,2028 88,7246 90,4091

Statue 96,9114 96,8417 95,9879 96,3565 95,6716 95,5484 95,9981 96,0126 95,4589 95,5434

Sculpt 96,7499 96,5031 95,8716 95,8493 95,0911 95,235 95,65 95,5224 94,5882 95,3193

Torus 99,7989 99,6884 99,7487 99,7523 99,6632 99,6656 99,6248 99,6429 99,6552 99,3946

Venus 96,2973 95,8331 95,3629 95,08 94,3801 94,6461 94,8963 94,7827 93,7346 94,6182

Face Fixer

bpv
bcm zpaq bzip2 lzlib lzma zstd balz brotli lzham libdeflate

Angel 2,133 2,1959 2,7973 2,6084 3,1712 3,1787 2,8963 2,853 3,2907 3,1143

Armadillo 1,918 1,9898 2,5661 2,3393 2,8769 2,9323 2,4874 2,5855 2,9206 2,8311

Body 4,0506 7,6174 5,0745 5,9634 5,8734 5,7609 5,6146 5,5696 6,7173 5,6484

Bunny 3,4485 5,3869 4,2731 4,9906 5,2423 4,9317 4,8514 4,9264 5,9705 4,9317

Cow 2,5207 3,4848 3,1873 3,5344 3,9614 3,73 3,4187 3,5069 4,3802 3,6612

Dinosaur 2,6473 2,8958 3,345 3,4405 4,0301 3,9176 3,7231 3,6714 4,4554 3,7947

Eight 2,6841 6,4125 3,3003 3,4674 3,4883 3,436 3,3107 3,2167 3,6449 3,4151

Fandisk 1,6914 2,2239 2,2079 2,2845 2,8318 2,5229 2,3364 2,3586 2,9245 2,5637

Feline 2,4805 2,5941 3,2026 3,133 3,7438 3,6594 3,3175 3,39 4,1032 3,5848

Foot 2,5879 2,9265 3,2995 3,401 4,0016 3,7891 3,5104 3,6326 4,484 3,7324

Geosphere 7,1605 24,8889 8,2963 8,4938 7,4074 7,5062 7,4074 7,2593 8,1481 7,1605

Hand 2,0269 2,1264 2,6563 2,3976 2,9583 2,9544 2,6627 2,6552 3,0329 2,9168

Happy 2,63 2,7064 3,3708 3,2594 3,8543 3,7783 3,5157 3,503 4,0907 3,816

Head 1,1286 1,5073 1,4793 1,5292 2,076 1,7712 1,5128 1,6461 1,873 1,8922

Horse 2,5095 2,7045 3,2139 3,199 3,8281 3,6851 3,3981 3,459 4,2227 3,6053

Nefertiti 6,0201 14,3144 7,4114 8,4013 7,786 7,6522 7,9197 7,6254 8,7759 7,4649

Statue 2,4709 2,5267 3,2097 2,9148 3,4627 3,5613 3,2015 3,1899 3,6329 3,5653

Sculpt 2,6006 2,7981 3,3034 3,3213 3,9279 3,8128 3,4807 3,5828 4,3303 3,7453

Torus 0,1609 0,2493 0,201 0,1982 0,2695 0,2675 0,3002 0,2858 0,2759 0,4844

Venus 2,9637 3,3353 3,7117 3,9381 4,4983 4,2854 4,0851 4,1761 5,015 4,3077

	ABSTRACT
	ÖZ
	GENİŞLETİLMİŞ ÖZET
	ACKNOWLEDGMENT
	ACKNOWLEDGMENT
	1. INTRODUCTION
	1.1. Problem Statement
	1.2. Thesis Contribution
	1.3. Thesis Layout

	2. BACKGROUND AND BASIC CONCEPTS
	2.1. Triangular Mesh
	2.2. Manifold Mesh
	2.3. The Euler-Poincaré formula
	2.4. Connectivity and Geometry
	2.5. Orientation
	2.6. Compression Performance

	3. DATA STRUCTURES OF MESH
	3.1. Face Set
	3.2. Indexed Face Set
	3.3. Adjacency Matrix
	3.4. Adjacency Lists
	3.5. Winged-Edge
	3.6. Half-Edge
	3.7. Corner Table
	3.8. Summary

	4. CLASSIFICATION
	5. SINGLE RATE MESH COMPRESSION
	5.1. Connectivity Compression
	5.1.1. Triangle Strip
	5.1.2. Spanning Tree
	5.1.3. Triangle Traversal (Conquest)
	5.1.4. Valence Encoding

	5.2. Geometry Compression
	5.2.1. Quantization
	5.2.1.1. Scalar Quantization
	5.2.1.2. Vector Quantization

	5.2.2. Prediction

	5.3. Entropy Coding

	6. EXPERIMENTAL DESIGN
	6.1. General-Purpose Data Compression Methods
	6.2. Dataset
	6.3. Design of Our Approaches
	6.4. Collected Methods and Final Testbed

	7. RESULTS AND DISCUSSIONS
	7.1. 3D Mesh Compression Methods
	7.2. General-Purpose Compressors
	7.2.1. Geometry Information
	7.2.2. Connectivity Information

	7.3. Total Compression Results

	8. CONCLUSION AND FUTURE WORK
	REFERENCES
	CURRICULUM VITAE

